Examination of indicator and pathogenic microbiota during the shelf-life of vacuum-packed Longissimus dorsi (sirloin)
DOI:
https://doi.org/10.5433/1679-0359.2023v44n6p2179Keywords:
Beef, Conservation, Microbiological quality, Shelf-Life.Abstract
Brazil is among the largest meat producers worldwide. Owing to the high productivity and concern regarding meat quality, slaughterhouses are looking for better ways to preserve meat. Vacuum packaging is the most widely used method to preserve meat. In this study, we aimed to monitor the indicator and pathogenic microbiota during the shelf-life of vacuum-packed bovine, Longissimus dorsi. Sirloin samples collected and conditioned in the boning section of a slaughterhouse under the Brazilian federal inspection were evaluated. Each sample was divided into four pieces, and each piece was used to make up a part of each pool, totaling four pools suspended at 7 ºC and analyzed from 0 to 60 d of primary packaging, with an interval of 20 d. Mesophilic aerobes, psychrotrophs, enterobacteria, coliforms at 30 °C, Escherichia coli and Staphylococcus spp. were quantified. Moreover, pathotypes of Shiga toxin-producing (STEC), enteropathogenic (EPEC), enterohemorrhagic (EHEC), enteroaggregative (EAEC), enterotoxigenic (ETEC), and enteroinvasive (EIEC) E. coli, Pseudomonas spp. (psychrotrophs), Salmonella spp., and Listeria monocytogenes were characterized. Number of indicator microorganisms progressively increased at each analysis interval. Specifically, psychrotrophs increased from 5 × 101 CFU/g on day 0 to 4.2 × 108 CFU/g on day 60, and Pseudomonas spp. was the predominant species (48%). The limits for standard counts set by the current Brazilian legislation were exceeded, such as for E. coli since day 20 (7 × 102 CFU/g). EPEC, ETEC, STEC, and EIEC were identified in addition to Listeria monocytogenes and Salmonella spp.; the latter was not detected on the first day of shelf-life. Therefore, revisions to self-control plans and greater microbiological rigor in the production and processing of beef are necessary to improve its shelf-life and safety.
Downloads
References
Agência Nacional de Vigilância Sanitária (2022). Instrução Normativa n° 161 de 01 de julho de 2022. Estabelece as listas de padrões microbiológicos para alimentos. Diário Oficial [da] República Federativa do Brasil, 126(1).
Alnajrani, M., Hanlon, K., English, A., Fermin, K., Brashears, M. M., & Echeverry, A. (2018). Comparing the recovery of indicator microorganisms from beef trimmings using swabbing, rinsing, and grinding methodologies. Meat and Muscle Biology, 2(1), 154-161. doi: 10.22175/mmb2017.09.0047 DOI: https://doi.org/10.22175/mmb.9059
Aranda, K. R. S., Fagundes, U., Neto, & Scaletsky, I. C. A. (2004). Evaluation of multiplex PCRs for diagnosis of infection with diarrheagenic Escherichia coli and Shigella spp. Journal of Clinical Microbiology, 42(12), 5849-5853. doi: 10.1128/jcm.42.12.5849-5853.2004 DOI: https://doi.org/10.1128/JCM.42.12.5849-5853.2004
Associação Brasileira das Indústrias Exportadoras de Carnes (2023). Beef report: perfil da pecuária no Brasil. https://www.abiec.com.br/exportacoes/
Autoridade de Segurança Alimentar e Econômica (2023). Salmonella. https://www.asae.gov.pt/seguranca-alimentar/riscos-biologicos/salmonella.aspx
Bezerra, W. I., & Martins, T. D. D. (2008). Análise dos pontos críticos em uma unidade frigorífica de abate de suínos em Igarassu-PE. Anais da Jornada Nacional da Agroindústria, João Pessoa, Paraíba, Brasil, 3.
Bomar, M. T. (1985). Rapid method for the determination of bacterial surface contamination in carcasses. Alimenta, 24(3), 55-57.
Bucher, O., D’Aoust, J. Y., & Holley, R. A. (2008). Thermal resistance of Salmonella serovars isolated from raw, frozen Chicken nuggets/strips, nugget meat and pelleted broiler feed. International Journal of Food Microbiology, 124(2), 195-198. doi: 10.1016/j.ijfoodmicro.2008.03.002 DOI: https://doi.org/10.1016/j.ijfoodmicro.2008.03.002
Carhuallanqui-Pérez, A. (2020). Evaluación del efecto combinado bactericida del aceite esencial del ajo (Allium sativum) y orégano (Origanum vulgare) sobre Listeria monocytogenes (ATCC) y Staphylococcus aureus (ATCC) em carne de res empacada al vacío y almacenada em refrigeración (4°C). Dissertação de Mestrado, Universidad Nacional Mayor de San Marcos, Lima, Portugal.
Carrasco, E., Morales-Rueda, A., & Garcia-Gimeno, R. M. (2012). Cross-contamination and recontamination by Salmonella in foods: a review. Food Research International, 45(2), 545-556. doi: 10.1016/j.foodres 2011.11.004 DOI: https://doi.org/10.1016/j.foodres.2011.11.004
Castro, V. S., Carvalho, R. C. T., Conte, C. A., Jr., & Figuiredo, E. E. S. (2017). Shiga‐toxin producing Escherichia coli: pathogenicity, supershedding, diagnostic methods, occurrence, and foodborne outbreaks. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1269-1280. doi: 10.1111/1541-4337.12302 DOI: https://doi.org/10.1111/1541-4337.12302
Cevallos-Almeida, M., Burgos-Mayorga, A., Gómez, C. A., Lema-Hurtado, J. L., Lema, L., Calvache, I., Jaramillo, C., Ruilova, I. C., Martínez, E. P., & Estupiñán, P. (2021). Association between animal welfare indicators and microbiological quality of beef carcasses, including Salmonella spp., from a slaughterhouse in Ecuador. Veterinary World, 14(4), 918-925. doi: 10.14202%2Fvetworld.2021.918-925 DOI: https://doi.org/10.14202/vetworld.2021.918-925
Chen, Y., & Knabel, S. J. (2007). Multiplex PCR for simultaneous detection of bacteria of the genus Listeria, Listeria monocytogenes, and major serotypes and epidemic clones of L. monocytogenes. Applied and Environmental Microbiology, 73(19), 6299-6304. doi: 10.1128/AEM.00961-07 DOI: https://doi.org/10.1128/AEM.00961-07
Chen, Y., Ma, F., Wu, Y., Tan, S., Niu, A., Qiu, W., & Wang, G. (2023). Biosurfactant from Pseudomonas fragi enhances the competitive advantage of Pseudomonas but reduces the overall spoilage ability of the microbial community in chilled meat. Food Microbiology, 115, 104311. doi: 10.1016/j.fm.2023.104311 DOI: https://doi.org/10.1016/j.fm.2023.104311
Cipriano, L. C., Sousa, L. B., Siqueira, H. P. G., Lima, E. F., Messias, C. T., Marchi, P. G. F., Medeiros, E. S., Hoppe, I. B. A. L., & Siquera, A. B. (2021). Vida útil de carne bovina moída comercializada no município de Boa vista - Roraima. Research, Society and Development, 10(2), 1-12. doi: 10.33448/rsd-v10i2.12282 DOI: https://doi.org/10.33448/rsd-v10i2.12282
Costa, G, M., Pereira, U. P., Custodio, D. A. C., & Silva, N. (2011). Caracterização de Staphylococcus coagulase-positiva utilizando plasmas de diferentes espécies animais. Revista do Instituto Adolfo Lutz, 70(4), 584-588. DOI: https://doi.org/10.53393/rial.2011.v70.32518
Djordjević, J., Boskovi, M., StarcevI, M., Ivanovic, J., Karabasil, N., Dimitrijevic, M., Lazic, I. B., & Baltic, M. Z. (2018). Survival of Salmonella spp. in ground meat packed in vacum and modified atmosphere. Brazilian Journal of Microbiology, 49(3), 607-613. doi: 10.1016/j.bjm.2017.09.009 DOI: https://doi.org/10.1016/j.bjm.2017.09.009
Enciso-Martínez, Y., González-Aguilar, G. A., Martínez-Téllez, M. A., González-Pérez, C. J., Valencia-Rivera, D. E., Barrios-Villa, E., & Ayala-Zavala, J. F. (2022). Relevance of tracking the diversity of Escherichia coli pathotypes to reinforce food safety. International Journal of Food Microbiology, 374(2), 109736. doi: 10.1016/j.ijfoodmicro.2022.109736 DOI: https://doi.org/10.1016/j.ijfoodmicro.2022.109736
Ercolini, D., Russo, F., Nasi, A., Ferranti, P., & Villani, F. (2009). Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Applied and Environmental Microbiology, 75(7), 1990-2001. doi: 10.1128/AEM.02762-08 DOI: https://doi.org/10.1128/AEM.02762-08
Ferreira, R. C. (2019). Avaliação da qualidade microbiológica do presunto cozido fatiado e das condições higiênico-sanitárias do ambiente industrial. Dissertação de mestrado, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
Filipello, V., Mughini-Gras, L., Gallina, S., Vitale, N., Mannelli, A., Pontello, M., Decastelli, L., Allard, M. W., Brown, E. W., & Lomonaco, S. (2020). Attribution of Listeria monocytogenes human infections to food and animal sources in Northern Italy. Food Microbiology, 89, 103433. doi: 10.1016/j.fm.2020.103433 DOI: https://doi.org/10.1016/j.fm.2020.103433
Frank, J. F., & Yousef, A. E. (2004) Test for groups of microrganisms. In H. M. Wehr, & J. K. Frank (Eds.), Standard methods for the examination of dairy products (Chapter 8, pp. 239-242). Washington: American Public Health Association.
Franzetti, L., & Scarpellini, M. (2007). Characterisation of Pseudomonas spp. isolated from foods. Annals of Microbiology, 57(1), 39-47. doi: 10.1007/BF03175048 DOI: https://doi.org/10.1007/BF03175048
Furlanetto, K. H. (2020). Avaliação da vida de prateleira e da qualidade de amostras de carne bovina resfriada embaladas à vácuo pelo período de 120 dias. Dissertação de mestrado, Universidade Tecnológica Federal do Paraná, Londrina, PR, Brasil. DOI: https://doi.org/10.34117/bjdv6n7-840
Gowda, T. K., Zutter, L. de, Van Royen, G., & Van Damme, I. (2022). Exploring the microbiological quality and safety of dry-aged beef: a cross-sectional study of loin surfaces during ripening and dry-aged beef steaks from commercial meat companies in Belgium. Food Microbiology, 102, 103919. doi: 10.1016/j.fm.2021.103919 DOI: https://doi.org/10.1016/j.fm.2021.103919
He, Y., Wang, J., Zhang, R., Chen, L., Zhang, H., Qi, X., & Chen, J. (2023). Epidemiology of foodborne diseases caused by Salmonella in Zhejiang Province, China, between 2010 and 2021. Frontiers in Public Health, 11, 1127925. doi: 10.3389/fpubh.2023.1127925 DOI: https://doi.org/10.3389/fpubh.2023.1127925
Hervert, C. J., Alles, A. S., Martin, N. H., Boor, K. J., & Wiedmann, M. (2016). Evaluation of different methods to detect microbial hygiene indicators relevant in the dairy industry. Journal Dairy Science, 99(9), 7033-7042. doi: 10.3168/jds.2016-11074 DOI: https://doi.org/10.3168/jds.2016-11074
Hugas, M., Pagés, F., Garriga, M., & Monfort, J. M. (1998). Application of the bacteriocinogenic Lactobacillus sakei CTC 494 to prevent growth of Listeria in fresh and cooked meat products packed with different atmospheres. Food Microbiology, 15, 639-650. doi: 10.1006/fmic.1998.0208 DOI: https://doi.org/10.1006/fmic.1998.0208
Instituto Brasileiro de Geografia e Estatística (2023). Rebanho de bovinos (bois e vacas). https://www.ibge.gov.br/explica/producao-agropecuaria/bovinos/br
International Commission on Microbiological Specifications for Foods (1986a). Microorganisms in foods.2. Sampling for microbiological analysis: principles and specific applications (2nd ed.).
International Committee of Microbiological Specification for Foods Meat and Meat Products (ICMSF). (1986b). In ICMSF microbiological ecology of food (vol. 2.). Food Commodities Academic Press.
International Organization for Standardization 11290-1 (2004). Microbiology of food and animal feeding stuffs - horizontal method for the detection and enumeration of Listeria monocytogenes e Part 1: detection method. ISO 1996.
International Organization for Standardization 6579 (2005). Microbiology of food and animal feeding stuffs - horizontal method for detection of Salmonella spp. (4nd ed.). ISO.
International Organization for Standardization 6888-1 (1999). Microbiology of food and animal feeding stuffs - horizontal method for the enumeration of coagulase‐positive Staphylococci (Staphylococcus aureus and Other Species) - Part 1: Technique using Baird-Parker agar médium. ISO.
Jenkins, C., Dallman, T. J., & Grant, K. A. (2019). Impact of whole genome sequencing on the investigation of food-borne outbreaks of Shiga toxin-producing Escherichia coli serogroup O157: H7, England, 2013 to 2017. Eurosurveillance, 24(4), 1800346. doi: 10.2807/1560-7917.ES.2019.24.4.1800346 DOI: https://doi.org/10.2807/1560-7917.ES.2019.24.4.1800346
Jibo, G. G., Raji, Y. E., Salawudeen, A., Amin-Nordin, S., Mansor, R., & Jamaluddin, T. Z. M. T. (2022). A systematic review and meta-analysis of the prevalence of Listeria monocytogenes in South-East Asia; a one-health approach of human-animal-food-environment. One Health, 15, 100417. doi: 10.1016/j.onehlt.2022.100417 DOI: https://doi.org/10.1016/j.onehlt.2022.100417
Marquezini, M. G., Orlando, E. A., Yotsuyanagi, S. E., & Bromberg, R. (2016). Analysys of vacum packed beef regarding psychrotrophuc bactéria growth na biogenic amines contente. Procedia Food Science, 7, 141-144. doi: 10.1016/j.profoo.2016.06.001 DOI: https://doi.org/10.1016/j.profoo.2016.06.001
McMillin, K. W. (2008). Where is MAP going? A review and future potential of modified atmosphere packaging for meat. Meat Science, 80(1), 43-65. doi: 10.1016/j.meatsci.2008.05.028 DOI: https://doi.org/10.1016/j.meatsci.2008.05.028
Mendonça, B. S., & Silva, C. S. (2012). Qualidade microbiológica da carne moída comercializada na cidade Cariacica, ES. Higiene Alimentar, 26(208/209), 101-105.
Miliotis, M. D., & Bier, J. W. (2003). International handbook of foodborne pathogens. Marcel Dekker. DOI: https://doi.org/10.1201/9780203912065
Mills, J., Donnison, A., & Brightwell, G. (2014). Factors affecting microbial spoilage and shelf-life of chilled vacuum-packed lamb transported to distant markets: a review. Meat Science, 98(1), 71-80. doi: 10.1016/j.meatsci.2014.05.002 DOI: https://doi.org/10.1016/j.meatsci.2014.05.002
Ministério da Agricultura, Pecuária e Abastecimento (2018). Instrução Normativa nº 60 de 20 de dezembro de 2018. Estabelece o controle microbiológico em carcaça de suínos e em carcaça e carne de bovinos em abatedouros frigoríficos. Diário Oficial [da] República Federativa do Brasil, 246(1), 4.
Miya, S., Takahashi, H., Hashimoto, M., Nakazawa, M., Kuda, T., Koiso, H., & Kimura, B. (2014). Development of a controlling method for Escherichia coli O157: H7 and Salmonella spp in fresh market beef by using polylysine and modified atmosphere packaging. Food Control, 37, 62-67. doi: 10.1016/j.foodcont.2013.09.028 DOI: https://doi.org/10.1016/j.foodcont.2013.09.028
Mladenović, K. G., Grujović, M. Ž., Kiš, M., Furmeg, S., Tkalec, V. J., Stefanović, O. D., & Kocić-Tanackov, S. D. (2021). Enterobacteriaceae in food safety with an emphasis on raw milk and meat. Applied Microbiology and Biotechnology, 105, 8615-8627. doi: 10.1007/s00253-021-11655-7 DOI: https://doi.org/10.1007/s00253-021-11655-7
Monsón, F., Sañudo, C., & Sierra, I. (2005). Influence of breed and ageing time on the sensory meat quality and consumer acceptability in intensively reared beef. Meat Science, 71(3), 471-479. doi: 10.1016/j.meatsci.2005.04.026 DOI: https://doi.org/10.1016/j.meatsci.2005.04.026
Nethra, P. V., Sunooj, K. V., Aaliya, B., Navaf, M., Akhila, P. P., Sudheesh, C., Mir, S. A., Shijin, A., & George, J. (2023). Critical factors affecting the shelf life of packaged fresh red meat-a review. Measurement: Food, 10(1), 100086. doi: 10.1016/j.meafoo.2023.100086 DOI: https://doi.org/10.1016/j.meafoo.2023.100086
Redondo-Solano, M., Guzmán-Saborío, P., Ramírez-Chavarría, F., Chaves-Ulate, C., Araya-Quesada, Y., & Araya-Morice, A. (2020). Effect of the type of packaging on the shelf life of ground rabbit meat. Food Science and Technology International, 28(2), 190-199. doi: 10.1177/10820132211003705 DOI: https://doi.org/10.1177/10820132211003705
Ribeiro, J. C., Jr., Oliveira, A. M. de, Silva, F. D. G., Tamanini, R., Oliveira, A. L. M. de, & Beloti, V. (2018). The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. Journal of Dairy Science, 101(1), 75-83. doi: 10.3168/jds.2017-13069 DOI: https://doi.org/10.3168/jds.2017-13069
Ribeiro, J. C., Jr., Santos, I. G. C., Dias, B. P., Nascimento, C. A., & Lobo, C. M. O. (2021). Qualidade e segurança microbiológica de Longissimus Dorsi in natura e evolução das contagens de aeróbios mesófilos e psicrotróficos de ao longo de 30 dias de maturação a seco (dry-aged). Brazilian Journal of Development, 7(4), 39347-39361. doi: 10.34117/bjdv7n4-409 DOI: https://doi.org/10.34117/bjdv7n4-409
Ribeiro, J. C., Jr., Silva, F. F., Lima, J. B. A., Ossugui, E. H., Teinder, P. I., Jr., Campos, A. C. L. P., Navarro, A., Tamanini, R., Ribeiro, J., Alfieri, A. A., & Beloti, V. (2019). Short communication: molecular characterization and antimicrobial resistance of pathogenic Escherichia coli isolated from raw milk and Minas Frescal cheeses in Brazil. Journal of Dairy Science, 102(12), 10850-10854. doi: 10.3168/jds.2019-16732 DOI: https://doi.org/10.3168/jds.2019-16732
Ribeiro, J. C., Jr., Tamanini, R., Soares, B. F., Oliveira, A. M., Silva, F. G., Silva, F. F., Augusto, N. A., & Beloti, V. (2016). Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating spore-forming bacteria from milk. Semina: Ciências Agrárias, 7(5), 3069-3078. doi: 10.5433/1679-0359.2016v37n5p3069 DOI: https://doi.org/10.5433/1679-0359.2016v37n5p3069
Sagawa, R., Rodrigues, Y. M., Nascimento, C. A., Ribeiro, J., Silva Oliveira, M. da, Conti, A. C. M., & Ribeiro, J. C., Jr. (2022). Impact of the pre-slaughter period on the contamination of bovine leather and the operational sanitary procedure for skinning on the quality and microbiological safety of the carcass. Semina: Ciências Agrarias, 43(4), 1835-1848. doi: 10.5433/1679-0359.2022v43n4p1835 DOI: https://doi.org/10.5433/1679-0359.2022v43n4p1835
Saraiva, C., Fontes, M. D. C., Patarata, L., Martins, C., Cadavez, V., & Gonzales-Barron, U. (2016). Modelling the kinetics of Listeria monocytogenes in refrigerated fresh beef under different packaging atmospheres. LWT-Food Science and Technology, 66, 664-671. doi: 10.1016/j.lwt.2015.11.026 DOI: https://doi.org/10.1016/j.lwt.2015.11.026
Savini, F., Romano, A., Giacometti, F., Indio, V., Pitti, M., Decastelli, L., Devalle, P. L., Gorrasi, I. S. R., Miaglia, S., & Serraino, A. (2023). Investigation of a Staphylococcus aureus sequence type 72 food poisoning outbreak associated with food‐handler contamination in Italy. Zoonoses and Public Health, 70(5), 411-419. doi: 10.1111/zph.13046 DOI: https://doi.org/10.1111/zph.13046
Schoder, D., Guldimann, C., & Märtlbauer, E. (2022). Asymptomatic carriage of Listeria monocytogenes by animals and humans and its impact on the food chain. Foods, 11(21), 3472. doi: 10.3390/foods11213472 DOI: https://doi.org/10.3390/foods11213472
Shanmugasamy, M., Velayutham, T., & Rajeswar, J. (2011). InvA gene specific PCR for detection of Salmonella from broilers. Veterinary World, 4(12), 562-564. doi: 10.5455/vetworld.2011.562-564 DOI: https://doi.org/10.5455/vetworld.2011.562-564
Sophos, J. N. (2014). Meat and meat products. Food Safety Management, 6, 119-162. doi:10.1016/B978-0-12-381504-0.00006-8 DOI: https://doi.org/10.1016/B978-0-12-381504-0.00006-8
Spiker, T., Coenye, T., Vandamm, P., & Lipuma, J. J. (2004). PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. Journal of Clinical Microbiologt, 42(5), 2074-2079. doi: 10.1128/JCM.42.5.2074-2079.2004 DOI: https://doi.org/10.1128/JCM.42.5.2074-2079.2004
Tack, D. M., Kisselburgh, H. M., Richardson, L. C., Geissler, A., Griffin, P. M., Payne, D. C., & Gleason, B. L. (2021). Shiga toxin-producing Escherichia coli outbreaks in the United States, 2010-2017. Microorganisms, 9(7), 1529. doi: 10.3390/microorganisms9071529 DOI: https://doi.org/10.3390/microorganisms9071529
Teider, P. I., Jr., Ribeiro, J. C., Jr., Ossugui, E. H., Tamanini, R., Ribeiro, J., Santos, G. A., Alfieri, A. A., & Beloti, V. (2019). Pseudomonas spp e outros microrganismos psicrotróficos em queijo Minas Frescal brasileiro inspecionado e não inspecionado: potencial de produção proteolítica, lipolítica e AprX1. Pesquisa Veterinária Brasileira, 39(10), 807-815. doi: 10.1590/1678-5150-PVB-6037 DOI: https://doi.org/10.1590/1678-5150-pvb-6037
Thomas, K. M., Glanville, W. A. de, Barker, G. C., Benschop, J., Buza, J. J., Cleaveland, S., Davis, M. A., French, N. P., Mmbaga, B. T., Prinsen, G., Swai, E. S., Zadoks, R. N., & Crump, J. A. (2020). Prevalence of Campylobacter and Salmonella in African food animals and meat: a systematic review and meta-analysis. International Journal of Food Microbiology, 315, 108382. doi: 10.1016/j.ijfoodmicro.2019.108382 DOI: https://doi.org/10.1016/j.ijfoodmicro.2019.108382
Tsigarida, E., & Nychas, G. J. E. (2006). Effect of high-barrier packaging films with different oxygen transmissin rates on the growt of Lactobacillus sp. on meat fillets. Journal of Food Protection, 69(4), 943-947. doi: 10.4315/0362-028X-69.4.943 DOI: https://doi.org/10.4315/0362-028X-69.4.943
Wang, X., Wang, Z., Sun, Z., Wang, D., Liu, F., & Lin, L. (2022). In vitro and in situ characterization of psychrotrophic spoilage bacteria recovered from chilled chicken. Foods, 12(1), 95-108. doi: 10.3390/foods12010095 DOI: https://doi.org/10.3390/foods12010095
Watson, S. C., Furbeck, R. A., Fernando, S. C., Chaves, B. D., & Sullivan, G. A. (2023). Spoilage Pseudomonas survive common thermal processing schedules and grow in emulsified meat during extended vacuum storage. Journal of Food Science, 88(5), 2162-2167. doi: 10.1111/1750-3841.16557 DOI: https://doi.org/10.1111/1750-3841.16557
Wei, Q., Wang, X., Sun, D. W., & Pu, H. (2019). Rapid detection and control of psychrotrophic microorganisms in cold storage foods: a review. Trends in Food Science & Technology, 86, 453-464. doi: 10.1016/j.tifs.2019.02.009 DOI: https://doi.org/10.1016/j.tifs.2019.02.009
Wickramasinghe, N. N., Ravensdale, J., Coorey, R., Chandry, S. P., & Dykes, G. A. (2019). The predominance of psychrotrophic pseudomonads on aerobically stored chilled red meat. Comprehensive Reviews in Food Science and Food Safety, 18(5), 1622-1635. doi: 10.1111/1541-4337.12483 DOI: https://doi.org/10.1111/1541-4337.12483
Wickramasinghe, N. N., Ravensdale, J., Coorey, R., Dykes, G. A., & Chandry, P. S. (2021). Transcriptional profiling of biofilms formed on chilled beef by psychrotrophic meat spoilage bacterium, Pseudomonas fragi 1793. Biofilm, 3, 100045. doi: 10.1016/j.bioflm.2021.100045 DOI: https://doi.org/10.1016/j.bioflm.2021.100045
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.