Effect of different temperatures on the incubation of European quail eggs
DOI:
https://doi.org/10.5433/1679-0359.2025v46n1p299Keywords:
Hatchability, Incubation, Meat-type quail, Morphological quality, Thermal optimization.Abstract
Temperature is an important factor to be studied and defined in the artificial incubation of eggs, as it influences hatching success and the quality of the hatched animals. Optimal temperatures may vary depending on the species and their productive potential. In this study, we investigated the effects of various incubation temperatures on European quail eggs. A total of 1,000 eggs from two genetic groups of European quail were incubated at five different temperatures (37.0, 37.5, 38.0, 38.5, and 39.0 ± 0.2 ºC). Upon hatching, we analyzed incubation yield parameters, including incubation time, hatchability, embryodiagnosis, quail weight, and morphological quality. The results showed that temperature significantly influenced phase I of embryodiagnosis in a linear manner and had a significant quadratic effect on hatchability, phase III of embryodiagnosis, and quail weight. The average incubation time and morphological quality were also influenced by temperature. Extreme temperatures led to poorer outcomes, reducing hatchability, quail weight, and morphological quality, while increasing embryonic mortality. Incubation time decreased as the temperature increased. Intermediate temperatures of 37.9 and 38.6 ºC maximized hatchability and quail weight, respectively, with an optimal temperature range incorporating the best results for other variables: 38.1 ºC for embryonic mortality in phase 3 and 38.5 ºC for morphological quality. An average temperature of 38.3 ºC, between the variables hatchability and quail weight, is recommended for incubating this species.
Downloads
References
Abuoghaba, A. A., Ali, F., Ismail, I. I., & Saleh, M. (2021). Impact of acute short-term high thermal stress during early embryogenesis on hatchability, physiological body reaction, and ovarian follicles development of quails. Poultry Science, 100(2), 1213-1220. doi: 10.1016/j.psj.2020.11.019
Ainsworth, S. J., Stanley, R. S., & Evans, D. J. R. (2010). Developmental stages of the Japanese quail. Journal of Anatomy, 216(1), 3-15. doi: 10.1111%2Fj.1469-7580.2009.01173.x
Alo, E. T., Daramola, J. O., Wheto, M., & Oke, O. E. (2023). Impact of broiler breeder hens' age and egg storage on egg quality, embryonic development, and hatching traits of FUNAAB-alpha chickens. Poultry Science, 102(2), 103313. doi: 10.1016/j.psj.2023.103313
Ben-Ezra, N., & Burness, G. (2017). Constant and cycling incubation temperatures have long-term effects on the morphology and metabolic rate of Japanese quail. Physiological and Biochemical Zoology, 90(1), 96-105. doi: 10.1086/688383
Boleli, I. C., Morita, V. S., Matos, J. B., Jr., Thimotheo, M., & Almeida, V. R. (2016). Poultry egg incubation: integrating and optimizing production efficiency. Brazilian Journal of Poultry Science, 18(2), 1-16. doi: 10.1590/1806-9061-2016-0292
Carvalho, A. V., Hennequet-Antier, C., Crochet, S., Bordeau, T., Couroussé, N., Cailleau-Audouin, E., Chartrin, P., Darras, V. M., Zerjal, T., & Coustham, V. (2020). Embryonic thermal manipulation has short and long-term effects on the development and the physiology of the Japanese quail. Plos One, 15(1), 1-20. doi: 10.1371%2Fjournal.pone.0227700
Durant, S. E., Hopkins, W. A., & Hepp, G. R. (2011). Embryonic developmental patterns and energy expenditure are affected by incubation temperature in Wood Ducks (Aix sponsa). Physiological and Biochemical Zoology, 85(5), 451-457. doi: 10.1086/661749
El-Shater, S. N., Rizk, H., Abdelrahman, H. A., Awad, M. A., Khalifa, E. F., & Khalil, K. M. (2021). Embryonic thermal manipulation of Japanese quail: effects on embryonic development, hatchability, and post-hatch performance. Tropical Animal Health and Production, 53(263), 1-10. doi: 10.1007/s11250-021-02726-y
French, N. A. (1997). Modeling incubation temperature: the effects of incubator design, embryonic development, and egg size. Poultry Science, 76(1), 124-133. doi: 10.1093/ps/76.1.124
Ipek, A., Sahan, U., Baycan, S. C., & Sozcu, A. (2014). The effects of different eggshell temperatures on embryonic development, hatchability, chick quality, and first-week broiler performance. Poultry Science, 93(2), 464-472. doi: 10.3382/ps.2013-03336
Karakelle, H., ÖzçaliÅŸan, G., Åžahin, F., & Narinç, D. (2023). The effects of exposure to cold during incubation on developmental stability, fear, growth, and carcass traits in Japanese quails. International Journal of Biometeorology, 67(8), 1303-1310. doi: 10.1007/s00484-023-02497-1
Molenaar, R., Meijerhof, R., Van Den Anker, I., Heetkamp, M. J. W., Van Den Borne, J. J. G. C., Kemp, B., & Van Den Brand, H. (2010). Effect of eggshell temperature and oxygen concentration on survival rate and nutrient utilization in chicken embryos. Poultry Science, 89(9), 2010-2021. doi: 10.3382/ps.2010-00787
Molenaar, R., Van Den Anker, I., Meijerhof, R., Kemp, B., & Van Den Brand, H. (2011). Effect of eggshell temperature and oxygen concentration during incubation on the developmental and physiological status of broiler hatchlings in the perinatal period. Poultry Science, 90(6), 1257-1266. doi: 10.3382/ps.2010-00684
Narinç, D., ErdoÄŸan, S., Tahtabiçen, E., & Aksoy, T. (2016). Effects of thermal manipulations during embryogenesis of broiler chickens on developmental stability, hatchability and chick quality. Animal, 10(8), 1328-1335. doi: 10.1017/S1751731116000276
Nascimento, J. G., Zica, A. R., Prado, A. W. S., & Passos, P. I. B. (2021). Criação de codornas para corte. Coleção Emater.
Noiva, R. M., Menezes, A. C., & Peleteiro, M. C. (2014). Influence of temperature and humidity manipulation on chicken embryonic development. BMC Veterinary Research, 10(234), 1-10. doi: 10.1186/s12917-014-0234-3
Nord, A., & Nilsson, J. (2021). Low incubation temperature slows the development of cold tolerance in a precocial bird. Journal of Experimental Biology, 224(1), 1-5. doi: 10.1242/jeb.237743
Porto, M. L., Teófilo, T. S., Cavalcanti, D. M. L. P., Freitas, C. I. A., Oliveira, M. F., & Fontenele, J. D., Neto. (2021). Incubation variables, performance, and morphometry of the duodenal mucosa of Japanese quails (Coturnix coturnix japonica) submitted to different incubation temperatures and thermally challenged after hatching. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 73(2), 495-507. doi: 10.1590/1678-4162-12052.
Prates, J. V. S., Pereira, D. D., Braga, Y. C., Gomes, G. S. A., Jesus, R. M. G., Gomes, R. M., Silva, F. G., Sa-Fortes, C. M. L., & Ferreira, F. (2023). Apple vinegar as a source of organic acid for meat quails. In A. M. Lermen, & H. C. Brito (Orgs.), Ciências agrárias e meio ambiente: pesquisas, desafios e inovações tecnológicas (pp. 157-168). Campina Grande.
Romao, J. M., Moraes, T. G. V., Teixeira, R. S. C., Buxade, C. C., & Cardoso, W. M. (2009). Incubation of Japanese quail eggs at different temperatures: hatchability, hatch weight, hatch time and embryonic mortality. Archives of Veterinary Science, 14(3), 155-162. doi: 10.5380/avs.v14i3.14887
Sgavioli, S., Matos, J. B., Jr., Borges, L. L., Praes, M. F. F. M., Morita, V. S., Zanirato, R. G., Garcia, G. L., & Boleli, I. C. (2015). Effects of ascorbic acid injection in incubated eggs submitted to heat stress on incubation parameters and chick quality. Brazilian Journal of Poultry Science, 17(2), 181-190. doi: 10.1590/1516-635x1702181-190
SAS Institute Inc. (2023). SAS/STAT® 15.3 User's Guide. SAS Institute Inc. https://welcome.oda.sas.com/
Tona, K., Bamelis, F., De Ketelaere, B., Bruggeman, V., Moraes, V. M. B., Buyse, J., Onagbesan, O., & Decuypere, E. (2003). Effects of egg storage time on spread of hatch, chick quality, and chick juvenile growth. Poultry Science, 82(5), 736-741. doi: 10.1093/ps/82.5.736
Wada, H., Kriengwatana, B., Allen, N., Schmidt, K. L., Soma, K. K., & MacDougall-Shackleton, S. A. (2015). Transient and permanent effects of suboptimal incubation temperatures on growth, metabolic rate, immune function and adrenocortical responses in zebra finches. Journal of Experimental Biology, 218(18), 2847-2855. doi: 10.1242/jeb.114108
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 João Vitor Santana Prates, Daniel Dantas Pereira, Raíne Mantovani Gomes, Roberta Maira Gomes de Jesus, Cristina Maria Lima Sá-Fortes, Fabiana Ferreira, Felipe Gomes da Silva

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.











