Qualidade da carne de frangos submetidos ao estresse térmico cíclico suplementados com ZINCO-L-SELENOMETIONINA
DOI:
https://doi.org/10.5433/1679-0359.2024v45n6p1851Palavras-chave:
Antioxidante, Carcaça, Desempenho de crescimento, Nutrição, Selênio orgânico, Aves.Resumo
Um benefício adicional significativo da incorporação de formas orgânicas de selênio nas dietas de aves é a considerável melhoria na qualidade nutricional da carne. O objetivo deste estudo foi investigar as inclusões graduais de Zinco-L-Selenometionina (Zn-L-SeMet) nas dietas de frangos de corte de 1 a 42 dias de idade, criados sob condições de estresse térmico cíclico (ETC), e seus efeitos nas características da carcaça, miopatias do peito, qualidade e composição. Um total de 1.000 pintos machos Cobb 500® de um dia foram distribuídos aleatoriamente em cinco tratamentos: 0, 0,15, 0,23, 0,47 e 1,30 mg de Zn-L-SeMet por kg de ração; cada grupo consistiu em 10 repetições de 20 aves. As características da carcaça não foram afetadas (p ≥ 0,102). Todos os escores de incidência de miopatia do peito (de 0 a 3) foram afetados pelos tratamentos (p < 0,05). A inclusão de 1,30 proporcionou menor incidência de peitos de madeira (PM). Peitos do tratamento 0,15 tiveram menor incidência nos escores graves e extremos de Listras Brancas. Não houve efeitos significativos dos tratamentos na qualidade da carne do peito (p ≥ 0,180), peroxidação lipídica (p ≥ 0,172) e composição (p ≥ 0,383). A inclusão de 1,30 mg de Zn-L-SeMet para frangos de corte proporciona melhores escores de 0 para Peito de Madeira. Para Listras Brancas, a suplementação a partir de 0,15 mg de Zn-L-SeMet reduz a incidência do escore 3.
Downloads
Referências
Abdel-Moneim, E. A.-M., Abdelrazeq, M. S., Noureldeen, G. M., Ahmed, M. E., & Nashaat, S. I. (2022). Synergistic effect of Spirulina platensis and selenium nanoparticles on growth performance, serum metabolites, immune responses, and antioxidant capacity of heat-stressed broiler chickens. Biological Trace Element Research, 200(2), 768-779. doi: 10.1007/s12011-021-02662-w DOI: https://doi.org/10.1007/s12011-021-02662-w
Ahsan, U., & Cengiz, Ӧ. (2020). Restriction of dietary digestible lysine allowance in grower phase reduces the occurrence of white striping in broiler chickens. Animal Feed Science and Technology, 270, 114705. doi: 10.1016/j.anifeedsci.2020.114705 DOI: https://doi.org/10.1016/j.anifeedsci.2020.114705
Apple, J. K., Maxwell, C. V., Rodas, B., Watson, H. B., & Johnson, Z. B. (2000). Effect of magnesium mica on performance and carcass quality of growing-finishing swine. Journal of Animal Science, 78(8), 2135. doi: 10.2527/2000.7882135x DOI: https://doi.org/10.2527/2000.7882135x
Arnaut, P. R., Silva Viana, G. da, Fonseca, L. da, Alves, W. J., Muniz, J. C. L., Pettigrew, J. E., Silva, F. F. e, Rostagno, H. S., & Hannas, M. I. (2021). Selenium source and level on performance, selenium retention and biochemical responses of young broiler chicks. BMC Veterinary Research, 17(1), 1-13. doi: 10.1186/ s12917-021-02855-4 DOI: https://doi.org/10.1186/s12917-021-02855-4
Aslam, M.A., İpek, E., Riaz, R., Ӧzsoy, S. Y., Shahzad, W., & Güleş Ӧ. (2021). Exposure of broiler chickens to chronic heat stress increases the severity of white striping on the pectoralis major muscle. Tropical Animal Health and Production, 53(5), 1-10. doi: 10.1007/s11250-021-02950-6 DOI: https://doi.org/10.1007/s11250-021-02950-6
Association of Official Analytical Chemists (1990). Official methods of analysis (15nd ed.). AOAC International.
Association of Official Analytical Chemists (2005). Official methods of analysis (18nd ed.). AOAC International.
Bailey, R. A., Watson, K. A., Bilgili, S. F., & Avendano, S. (2015). The genetic basis of pectoralis major myopathies in modern broiler chicken lines. Poultry Science, 94(12), 2870-2879. doi: 10.3382/ps/pev304 DOI: https://doi.org/10.3382/ps/pev304
Bakhshalinejad, R., Hassanabadi, A., & Swick, R. A. (2019). Dietary sources and levels of selenium supplements affect growth performance, carcass yield, meat quality and tissue selenium deposition in broilers. Animal Nutrition, 5(3), 256-263. doi: 10.1016/j.aninu.2019.03.003 DOI: https://doi.org/10.1016/j.aninu.2019.03.003
Belhadj S., I., Najar, T., Ghram, A., Dabbebi, H., ben Mrad, M., & Abdrabbah, M. (2014). Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. International Journal of Hyperthermia, 30(7), 513-523. doi: 10.3109/02656736.2014.971446 DOI: https://doi.org/10.3109/02656736.2014.971446
Chaosap, C., Sivapirunthep, P., Takeungwongtrakul, S., Zulkifli, R. B. S., & Sazili A. Q. (2020). Effects of Zn-L-Selenomethionine on carcass composition, meat characteristics, fatty acid composition, glutathione peroxidase activity, and ribonucleotide content in broiler chickens. Food Science of Animal Resources, 40(3), 338-349. doi: 10.5851/kosfa.2020.e9 DOI: https://doi.org/10.5851/kosfa.2020.e9
Coetzee, G. J. M., & Hoffman, L. C. (2001). Effect of dietary vitamin E on the performance of broilers and quality of broiler meat during refrigerated and frozen storage. South African Journal of Animal Science, 31(3), 158-173. doi: 10.4314/sajas.v31i3.3799 DOI: https://doi.org/10.4314/sajas.v31i3.3799
Emami, N. K., Greene, E. S., Kogut, M. H., & Dridi, S. (2021). Heat stress and feed restriction distinctly affect performance, carcass and meat yield, intestinal integrity, and inflammatory (chemo) cytokines in broiler chickens. Frontiers in Physiology, 12, 707757. doi: 10.3389/fphys.2021.707757 DOI: https://doi.org/10.3389/fphys.2021.707757
Goel, A., Ncho, C. M., & Choi, Y. (2021). Regulation of gene expression in chickens by heat stress. Journal of Animal Science and Biotechnology, 12(11), 1-13. doi: 10.1186/s40104-020-00523-5 DOI: https://doi.org/10.1186/s40104-020-00523-5
Goo, D., Kim, J. H., Park, G. H., Reyes, J. B. D, & Kil, D. Y. (2019). Effect of heat stress and stocking density on growth performance, breast meat quality, and intestinal barrier function in broiler chickens. Animals, 9(3), 107. doi: 10.3390/ani9030107 DOI: https://doi.org/10.3390/ani9030107
Grossi, S., Rossi, L., Marco, M. de, & Sgoifo Rossi, C. A. (2021). The effect of different sources of selenium supplementation on the meat quality traits of young charolaise bulls during the finishing phase. Antioxidants, 10(4), 596. doi: 10.3390/antiox10040596 DOI: https://doi.org/10.3390/antiox10040596
Gul, F., Ahmad, B., Afzal, S., Ullah, A., Khan, S., Aman, K., Khan, M. T., Hadi, F., Kiran, K., Zahra, M., Maqbool, T., Mohsin, U., Nadeem, T., Javed, M. A., Ali, Q., & Ahmad, L. (2023). Comparative analysis of various sources of selenium on the growth performance and antioxidant status in broilers under heat stress. Brazilian Journal of Biology, 83 e251004. doi: 10.1590/1519-6984.251004 DOI: https://doi.org/10.1590/1519-6984.251004
Habibian, M., Ghazi, S., & Moeini, M. M. (2016). Effects of dietary selenium and vitamin e on growth performance, meat yield, and selenium content and lipid oxidation of breast meat of broilers reared under heat stress. Biological Trace Element Research, 169(1), 142-152. doi: 10.1007/s12011-015-0404-6 DOI: https://doi.org/10.1007/s12011-015-0404-6
Hariharan, S., & Dharmaraj, S. (2020). Selenium and selenoproteins: It’s role in regulation of inflammation. Inflammopharmacology, 28(3), 667-695. doi: 10.1007/s10787-020-00690-x DOI: https://doi.org/10.1007/s10787-020-00690-x
He, S. P., Arowolo, M. A., Medrano, R. F., Li, S., Yu, Q. F., Chen, J. Y., & He, J. H. (2018). Impact of heat stress and nutritional interventions on poultry production. World's Poultry Science Journal, 74(4), 647-664. doi: 10.1017/S0043933918000727 DOI: https://doi.org/10.1017/S0043933918000727
Honikel, K. O. (1998). Reference methods for the assessment of physical characteristics of meat. Meat Science, 49(4), 447-457. doi: 10.1016/S0309-1740(98)00034-5 DOI: https://doi.org/10.1016/S0309-1740(98)00034-5
Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Malevu, T. D., Sochor, J., Baron, M., Melcova, M., Zidkova, J., & Kizek, R. (2017). A summary of new findings on the biological effects of selenium in selected animal species a critical review. International Journal of Molecular Sciences, 18(10), 2209. doi: 10.3390/ijms18102209 DOI: https://doi.org/10.3390/ijms18102209
Ibrahim, D., Kishawy, A. T. Y., Khater, S. I., Hamed Arisha, A., Mohammed, H. A., Abdelaziz, A. S., Abd El-Rahman, G. I., & Elabbasy, M. T. (2019). Effect of dietary modulation of selenium form and level on performance, tissue retention, quality of frozen stored meat and gene expression of antioxidant status in ross broiler chickens. Animals, 9(6), 342. doi: 10.3390/ani9060342 DOI: https://doi.org/10.3390/ani9060342
Juniper, D. T., Phipps, R. H., & Bertin, G. (2011). Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on selenium tissue distribution and meat quality in commercial-line turkeys. Animal, 5(11), 1751-1760. doi: 10.1017/S1751731111000796 DOI: https://doi.org/10.1017/S1751731111000796
Kang, S., Kim, D., Lee, S., Lee, T., Lee, K., Chang, H., Moon, B., Ayasan, T., & Choi, Y. (2020). An acute, rather than progressive, increase in temperature-humidity index has severe effects on mortality in laying hens. Frontiers in Veterinary Science, 7, 568093. doi: 10.3389/fvets.2020.568093 DOI: https://doi.org/10.3389/fvets.2020.568093
Khan, A. Z., Kumbhar, S., Liu, Y., Hamid, M., Nido, S. A., Parveen, F., & Huang, K. (2018). Dietary supplementation of selenium-enriched probiotics enhances meat quality of broiler chickens (Gallus gallus domesticus) raised under high ambient temperature. Biological Trace Element Research, 182(2), 328-338. doi: 10.1007/s12011-017-1094-z DOI: https://doi.org/10.1007/s12011-017-1094-z
Kim, D. Y., Kim, J. H., Choi, W. J., Han, G. P., & Kil, D, Y. (2021). Comparative effects of dietary functional nutrients on growth performance, meat quality, immune responses, and stress biomarkers in broiler chickens raised under heat stress conditions. Animal Bioscience, 34(11), 1839. doi: 10.5713/ab.21.0230 DOI: https://doi.org/10.5713/ab.21.0230
Kim, Y. J., Park, W. Y., & Choi, I. H. (2010). Effects of dietary α-tocopherol, selenium, and their different combinations on growth performance and meat quality of broiler chickens. Poultry Science, 89(3), 603-608. doi: 10.3382/ps.2009-00280 DOI: https://doi.org/10.3382/ps.2009-00280
Krstić, B., Jokić, Ž., Pavlović, Z., & Živković D. (2012). Options for the production of selenized chicken meat. Biological Trace Element Research, 146(1), 68-72. doi: 10.1007/s12011-011-9229-0 DOI: https://doi.org/10.1007/s12011-011-9229-0
Kumar, S., Krishna Chaitanya, R., & Preedy, V. R. (2018). Assessment of antioxidant potential of dietary components. HIV/AIDS, 2018, 239-253. doi: 10.1016/B978-0-12-809853-0.00020-1 DOI: https://doi.org/10.1016/B978-0-12-809853-0.00020-1
Kuttappan, V. A., Brewer, V. B., Apple, J. K., Waldroup, P. W., & Owens, C. M. (2012). Influence of growth rate on the occurrence of white striping in broiler breast fillets. Poultry Science, 91(10), 2677-2685. doi: 10.3382/ps.2012-02259 DOI: https://doi.org/10.3382/ps.2012-02259
Leskovec, J., Levart, A., Perić, L., Đukić Stojčić, M., Tomović, V., Pirman, T., Salobir, J., & Rezar, V. (2019). Antioxidative effects of supplementing linseed oil-enriched diets with α-tocopherol, ascorbic acid, selenium, or their combination on carcass and meat quality in broilers. Poultry Science, 98(12), 6733-6741. doi: 10.3382/ps/pez389 DOI: https://doi.org/10.3382/ps/pez389
Li, J. L., Zhang, L., Yang, Z. Y., Zhang, Z. Y., Jiang, Y., Gao, F., & Zhou, G. H. (2018). Effects of different selenium sources on growth performance, antioxidant capacity and meat quality of local chinese subei chickens. Biological Trace Element Research, 181(2), 340-346. doi: 10.1007/s12011-017-1049-4 DOI: https://doi.org/10.1007/s12011-017-1049-4
Lin, H., Decuypere, E., & Buyse, J. (2006). Acute heat stress induces oxidative stress in broiler chickens. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 144(1), 11-17. doi: 10.1016/j.cbpa.2006.01.032 DOI: https://doi.org/10.1016/j.cbpa.2006.01.032
Lu, Q., Wen, J., & Zhang, H. (2007). Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poultry Science, 86(6), 1059-1064. doi: 10.1093/ps/86.6.1059 DOI: https://doi.org/10.1093/ps/86.6.1059
Ma, X., Jiang, Z., Zheng, C., Hu, Y., & Wang, L. (2015). Nutritional regulation for meat quality and nutrient metabolism of pigs exposed to high temperature environment. Journal of Nutrition & Food Sciences, 5(6), 1. doi: 10.4172/2155-9600.1000420 DOI: https://doi.org/10.4172/2155-9600.1000420
Ma, X., Wang, L., Shi, Z., Chen, W., Yang, X., Hu, Y., Zheng, C., & Jiang, Z. (2019). Mechanism of continuous high temperature affecting growth performance, meat quality, and muscle biochemical properties of finishing pigs. Genes & Nutrition, 14(1), 23. doi: 10.1186/s12263-019-0643-9 DOI: https://doi.org/10.1186/s12263-019-0643-9
Miao, Q., Si, X., Xie, Y., Chen, L., Liu, Z., Liu, L., Tang, X., & Zhang, H., (2020). Effects of acute heat stress at different ambient temperature on hepatic redox status in broilers. Poultry Science, 99(9), 4113-4122. doi: 10.1016/j.psj.2020.05.019 DOI: https://doi.org/10.1016/j.psj.2020.05.019
Mikulski, D., Jankowski, J., Zduńczyk, Z., Wróblewska, M., Sartowska, K., & Majewska, T. (2009). The effect of selenium source on performance, carcass traits, oxidative status of the organism, and meat quality of turkeys. Journal of Animal and Feed Sciences, 18(3), 518-530. doi: 10.22358/jafs/66427/2009 DOI: https://doi.org/10.22358/jafs/66427/2009
Mohamed, D. A., Sazili, A. Q., Teck Chwen, L., & Samsudin, A. A. (2020). Effect of microbiota-selenoprotein on meat selenium content and meat quality of broiler chickens. Animals, 10(6), 981. doi: 10.3390/ani100 60981 DOI: https://doi.org/10.3390/ani10060981
Mudalal, S., Lorenzi, M., Soglia, F., Cavani, C., & Petracci, M. (2015). Implications of white striping and wooden breast abnormalities on quality traits of raw and marinated chicken meat. Animal, 9(4), 728-734. doi: 10.1017/S175173111400295X DOI: https://doi.org/10.1017/S175173111400295X
Mujahid, A., Pumford, N. R., Bottje, W., Nakagawa, K., Miyazawa, T., Akiba, Y., & Toyomizu, M. (2007). Mitochondrial oxidative damage in chicken skeletal muscle induced by acute heat stress. The Journal of Poultry Science, 44(4), 439-445. doi: 10.2141/jpsa.44.439 DOI: https://doi.org/10.2141/jpsa.44.439
Nakamura, M., & Katoh, K. (1981). Influence of thawing methods on several properties of rabbit meat. Bulletin of Ishikawa Prefecture College of Agriculture.
National Research Council (1994). Nutrient requirements of poultry (9nd ed.). The National Academies Press.
Nemati, Z., Alirezalu, K., Besharati, M., Holman, B. W. B., Hajipour, M., & Bohrer, B. M. (2021). The effect of dietary supplementation with inorganic or organic selenium on the nutritional quality and shelf life of goose meat and liver. Animals, 11(2), 261. doi: 10.3390/ani11020261 DOI: https://doi.org/10.3390/ani11020261
Ngoula, F., Lontio, F. A., Tchoffo, H., Manfo Tsague, F. P., Djeunang, R.-M., Vemo, B. N., Moffo, F., & Djuissi Motchewo, N., (2020). Heat induces oxidative stress: reproductive organ weights and serum metabolite profile, testes structure, and function impairment in male cavy (Cavia porcellus). Frontiers in Veterinary Science, 7, 37. doi: 10.3389/fvets.2020.00037 DOI: https://doi.org/10.3389/fvets.2020.00037
Pan, C., Huang, K., Zhao, Y., Qin, S., Chen, F., & Hu, Q. (2007). Effect of selenium source and level in hen’s diet on tissue selenium deposition and egg selenium concentrations. Journal of Agricultural and Food Chemistry, 55(3), 1027-1032. doi: 10.1021/jf062010a DOI: https://doi.org/10.1021/jf062010a
Payne, R. L., & Southern, L. L. (2005). Comparison of inorganic and organic selenium sources for broilers. Poultry Science, 84(6), 898-902. doi: 10.1093/ps/84.6.898 DOI: https://doi.org/10.1093/ps/84.6.898
Pereira, A. L. F. A., & Abreu, V. K. G. (2018). Lipid peroxidation in meat and meat products. In A. M. Mahmoud (Eds.), Lipid peroxidation research (pp. 29-42). London, IntechOpen.
Petracci, M., Soglia, F., Madruga, M., Carvalho, L., Ida, E., & Estévez, M. (2019). Wooden‐breast, white striping, and spaghetti meat: causes, consequences and consumer perception of emerging broiler meat abnormalities. Comprehensive Reviews in Food Science and Food Safety, 18(2), 565-583. doi: 10.1111/1541-4337.12431 DOI: https://doi.org/10.1111/1541-4337.12431
Rajashree, K., Muthukumar, T., & Karthikeyan, N., (2014). Influence of inorganic and organic selenium sources on broiler performance and meat quality. Iranian Journal of Applied Animal Science, 4, 151-157.
Rinaldo, D., & Mourot, J. (2001). Effects of tropical climate and season on growth, chemical composition of muscle and adipose tissue and meat quality in pigs. Animal Research, 50(6), 507-521. doi: 10.1051/ animres:2001142 DOI: https://doi.org/10.1051/animres:2001142
Rossi, C. A. S., Compiani, R., Baldi, G., Bernardi, C., Muraro, M., Marden, J.-P., & Dell’Orto, V. (2015). The effect of different selenium sources during the finishing phase on beef quality. Journal of Animal and Feed Sciences, 24(2), 93-99. doi: 10.22358/jafs/65633/2015 DOI: https://doi.org/10.22358/jafs/65633/2015
Rostagno, H. S., Albino, L. F. T., Melissa, I. H., Donzele, J. L., Sakomura, N. K., Perazzo, F. G., Saraiva, A., Teixeira, M. L., Rodrigues, P. B., Oliveira, R. F., Barreto, S. L. T., & Brito, C. O. (2017). Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais (4a ed.). UF, Departamento de Zootecnia
Sahin, N., Onderci, M., Sahin, K., & Kucul, O. (2008). Supplementation with organic or inorganic selenium in heat-distressed quail. Biological Trace Element Research, 122(3), 229-237. doi: 10.1007/s12011-007-80 75-6 DOI: https://doi.org/10.1007/s12011-007-8075-6
Sihvo, H.-K., Immonen, K., & Puolanne, E. (2014). Myodegeneration with fibrosis and regeneration in the pectoralis major muscle of broilers. Veterinary Pathology, 51(3), 619-623. doi: 10.1177/030098581349 7488 DOI: https://doi.org/10.1177/0300985813497488
Silva, V. A., Bertechini, A. G., Carvalho, A. C. de, Castro, R. T. da C., Oliveira, B. L. de, Konig, I. F. M., & Ramos, E. M. (2022). Meat quality and performance of broilers fed diets containing selenium yeast and sodium selenite. Pesquisa Agropecuária Brasileira, 57. doi: 10.1590/s1678-3921.pab2022.v57.02428 DOI: https://doi.org/10.1590/s1678-3921.pab2022.v57.02428
Silva, V. A., Bertechini, A. G., Nogueira, B. R. F., Ribeiro, H. V., Mencalha, R., & Ramos, E. M. (2019). Selenium yeast supplementation for broilers at different ages. Journal of Applied Poultry Research, 28(4), 1021-1027. doi: 10.3382/japr/pfz063 DOI: https://doi.org/10.3382/japr/pfz063
Sorensen, G., & Jorgensen, S. S. (1996). A critical examination of some experimental variables in the 2-thiobarbituric acid (TBA) test for lipid oxidation in meat products. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 202(3), 205-210. doi: 10.1007/BF01263541 DOI: https://doi.org/10.1007/BF01263541
Souza, C., Eyng, C., Viott, A. M., Avila, A. S. de, Pacheco, W. J., Rohloff, N., Kohler, T. L., Tenorio, K. I., Cirilo, E. H., & Nunes, R. V. (2021). Effect of dietary guanidinoacetic acid or nucleotides supplementation on growth performances, carcass traits, meat quality and occurrence of myopathies in broilers. Livestock Science, 251, 104659. doi: 10.1016/j.livsci.2021.104659 DOI: https://doi.org/10.1016/j.livsci.2021.104659
Stapleton, S. R. (2000). Selenium: an insulin mimetic. Cellular and Molecular Life Sciences CMLS, 57(13), 1874-1879. doi: 10.1007/PL00000669 DOI: https://doi.org/10.1007/PL00000669
Surai, P. F., Karadas, F., Pappas, A. C., & Sparks, N. H. C. (2006). Effect of organic selenium in quail diet on its accumulation in tissues and transfer to the progeny. British Poultry Science, 47(1), 65-72. doi: 10.1080/00071660500475244 DOI: https://doi.org/10.1080/00071660500475244
Surai, P. F., Kochish, I. I., Fisinin, V. I., & Velichko, O. A. (2018). Selenium in poultry nutrition: from sodium selenite to organic selenium sources. The Journal of Poultry Science, 55(2), 79-93. doi: 10.2141/jpsa.01 70132 DOI: https://doi.org/10.2141/jpsa.0170132
Teyssier, J. R., Preynat, A., Cozannet, P., Briens, M., Mauromoustakos, A., Greene, E. S., Owens, M., Dridi, S., & Rochell, S. J. (2022). Constant and cyclic chronic heat stress models differentially influence growth performance, carcass traits and meat quality of broilers. Poultry Science, 101(8), 101963. doi: 10.1016/j. psj.2022.101963 DOI: https://doi.org/10.1016/j.psj.2022.101963
Tijare, V. V., Yang, F. L., Kuttappan, V. A., Alvarado, C. Z., Coon, C. N., & Owens, C. M. (2016). Meat quality of broiler breast fillets with white striping and woody breast muscle myopathies. Poultry Science, 95(9), 2167-2173. doi: 10.3382/ps/pew129 DOI: https://doi.org/10.3382/ps/pew129
Vyncke, W. (1975). Evaluation of the direct thiobarbituric acid extraction method for determining oxidative rancidity in mackerel (Scomber scombrus L.). Fette, Seifen, Anstrichmittel, 77(6), 239-240. doi: 10.1002/ lipi.19750770610 DOI: https://doi.org/10.1002/lipi.19750770610
Wang, C., Xing, G., Wang, L., Li, S., Zhang, L., Lu, L., Luo, X., & Liao, X. (2021). Effects of selenium source and level on growth performance, antioxidative ability and meat quality of broilers. Journal of Integrative Agriculture, 20(1), 227-235. doi: 10.1016/S2095-3119(20)63432-3 DOI: https://doi.org/10.1016/S2095-3119(20)63432-3
Wang, W., Kang, R., Liu, M., Wang, Z., Zhao, L., Zhang, J., Huang, S., & Ma, Q. (2022). Effects of different selenium sources on the laying performance, egg quality, antioxidant, and immune responses of laying hens under normal and cyclic high temperatures. Animals, 12(8), 1006. doi: 10.3390/ani12081006 DOI: https://doi.org/10.3390/ani12081006
Wasti, S., Sah, N., & Mishra, B. (2021). Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals, 10(8), 1266. doi: 10.3390/ani1008126 DOI: https://doi.org/10.3390/ani10081266
Zheng, Y., Xie, T., Li, S., Wang, W., Wang, Y., Cao, Z., & Yang, H. (2022). Effects of selenium as a dietary source on performance, inflammation, cell damage, and reproduction of livestock induced by heat stress: a review. Frontiers in Immunology, 12, 820853. doi: 10.3389/fimmu.2021.820853 DOI: https://doi.org/10.3389/fimmu.2021.820853
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Guilherme Luis Silva Tesser , Nilton Rohloff Junior, Lairton Soares Coutinho Pontes , Cristine Kaufmann, Matheus Leandro dos Reis Maia, Gabriel Natã Comin, Eduarda Maiara Henz, Bruna Fernanda Alves Magalhães, Gabrieli Toniazzo, Ricardo Vianna Nunes
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.