Optimization of obtaining process of acid silage from poultry carcasses by response surface methodology

Authors

DOI:

https://doi.org/10.5433/1679-0359.2024v45n6p1921

Keywords:

Acetic acid, Phosphoric acid, Poultry waste.

Abstract

This study aims to optimize the process of obtaining acid silage from poultry carcasses by response surface methodology. For poultry silage preparation, dead animals from the production process in a broiler commercial farm were used. The carcasses were ground in an electric grinder, homogenized, and placed in 45 polyethylene containers with a capacity of 2 kg each, and distributed in a 33 incomplete factorial design of response surface methodology, with 15 treatments and three repetitions at the central point. The independent variables were acid concentration (X1), days of storage (X2), and daily number of turnings (X3¬). The levels of the independent variables were X1 =3, 5, and 7 (phosphoric and acetic acids in a ratio of 4:6); X2 =10, 20, and 30 days of storage; and X3 =0, 1, and 2 daily turnings. The dependent variables evaluated were pH, crude protein, lipid oxidation, oil extraction, and mesophile counting. The pH of the ensiled mass was influenced mainly by X1 presenting a negative linear effect and positive quadratic effect. The storage time had a positive effect on pH. For crude protein, a negative linear and quadratic effect of X1 were observed, indicating a region of maximum protein values at the midpoint. Regarding lipid oxidation, the model indicated a region of minimum values near the midpoint. The generated model for oil extraction indicated maximum values when the silage was stored for long periods and with high acid concentrations. For mesophilic count, various interactions among variables were observed by the generated model, and the response surface indicated a region with the highest microorganism number in low acid concentrations and after a few storage days. The response surface methodology allowed for the optimization of the variables (acid concentration, storage time, and daily turning number) in the preparation of poultry carcass silages. The best acid concentration that represented the optimal pH was 5% (2% phosphoric acid, 3% acetic acid), requiring storage for at least 20 days with only one daily turning.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Clovis Inocente Filho, Coordenadoria de Assistência Técnica Integral

Dr. in Animal Science, Coordenadoria de Assistência Técnica Integral, CATI, Assis, SP, Brazil.

Bruno Mazzer de Oliveira Ramos, Biorigin Animal Nutrition

Dr. in Animal Science, Biorigin Animal Nutrition, Louisville, KY, USA.

Fabio Yamashita, Universidade Estadual de Londrina

Prof. Dr. in Food Engineering, Department of Food Science and Technology, Agricultural Sciences Center Universidade Estadual de Londrina, UEL, Londrina, PR, Brazil.

Ronaldo Tamanini, Universidade Estadual de Londrina

Dr. in Animal Science, Animal Products Inspection Laboratory, Department of Veterinary Medicine, Agricultural Sciences Center, UEL, Londrina, PR, Brazil.

Odimári Pricila Prado-Calixto, Universidade Estadual de Londrina

Profa. Dra. in Animal Science, Department of Animal Science, Agricultural Sciences Center, UEL, Londrina, PR, Brazil.

Angela Rocio Poveda-Parra, Universidade Federal do Paraná

Profa. Dra. in Animal Science, Department of Animal Science, Program of Veterinary Medicine, Universidade Federal do Paraná, UFPR, Palotina, PR, Brazil.

Ivone Yurika Mizubuti, Universidade Estadual de Londrina

Profa. Dra. in Animal Science, Department of Animal Science, Agricultural Sciences Center, UEL, Londrina, PR, Brazil.

References

Association of Official Analytical Chemists (2016). Official methods of analytical of the association of official analytical of chemists (20nd ed.). AOAC.

Batalha, O. S., Alfaia, S. S., Cruz, F. G. G., Jesus, R. S., Rufino, J. P. F., & Costa, V. R. (2017). Digestibility and physico-chemical characteristics of acid silage meal made of pirarucu waste in diets for commercial laying hens. Acta Scientiarum. Animal Sciences, 39(3), 251-257. doi: 10.4025/actascianimsci.v39i3.35112 DOI: https://doi.org/10.4025/actascianimsci.v39i3.35112

Beerli, E. L., Beerli, K. M. C., & Logato, P. V. R. (2004). Silagem ácida de resíduos de truta (Oncorhynchus mykiss), com a utilização de ácido muriático. Ciência e Agrotecnologia, 28(1), 195-198. doi: 10.1590/S1413-70542004000100026 DOI: https://doi.org/10.1590/S1413-70542004000100026

Belc, N., Mustatea, G., Apostol, L., Iorga, S., Vlăduț, V. N., & Mosoiu, C. (2019). Cereal supply chain waste in the context of circular economy. In: E3S Web of Conferences, Târgovişte, Romênia, 8th International Conference on Thermal Equipment, Renewable Energy and Rural Development (TE-RE-RD 2019), 112, 03031. doi: 10.1051/ e3sconf/201911203031 DOI: https://doi.org/10.1051/e3sconf/201911203031

Borghesi, R., Arruda, L. F., & Oetterer, M. (2007). A silagem de pescado na alimentação de organismos aquáticos. Boletim do Ceppa, 25(2), 329-339. DOI: https://doi.org/10.5380/cep.v25i2.10643

Blake, J. P. (2004). Methods and technologies for handling mortality losses. World’s Poultry Science Journal, 60(4), 489-499. DOI: https://doi.org/10.1079/WPS200432

Borrajo, P., Pateiro, M., Barba, F. J., Mora, L., Franco, D., Toldrá, F., & Lorenzo, M. J. (2019). Antioxidant and antimicrobial activity of peptides extracted from meat by-products: a review. Food Analytical Methods, 12(11), 2401-2415. doi: 10.1007/ s12161-019-01595-4 DOI: https://doi.org/10.1007/s12161-019-01595-4

Box, G. E. P., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455-475. DOI: https://doi.org/10.1080/00401706.1960.10489912

Cai, T., & Sander, J. E. (1995). Fermentation mixture formulation and preservation of poultry carcasses. Journal of Applied Poultry Research, 4(1), 88-93. doi: 10.1093/japr/4.1.88 DOI: https://doi.org/10.1093/japr/4.1.88

Camilios, D., Neto, Buzato, J. B., Celligoi, M. A. P. C., & Oliveira, M. R. (2005). Otimização da produção de etanol por Zymomonas mobilis na fermentação do melaço de cana-de-Açúcar. Semina: Ciências Exatas e Tecnológica, 26(1), 17-22. doi: 10.5433/1679-0375.2005v26n1p17 DOI: https://doi.org/10.5433/1679-0375.2005v26n1p17

Chakka, A. K., Elias, M., Jini, R., Sakhare, P. Z., & Bhaskar, N. (2015) In-vitro antioxidant and antibacterial properties of fermentatively and enzymatically prepared chicken liver protein hydrolysates. Journal Food Science and Technology, 52(12),8059-8067. doi: 10.1007/s13197-015-1920-2 DOI: https://doi.org/10.1007/s13197-015-1920-2

Díaz-Cachay, C., Gamero-Collado, B., Alvarez-Verde, C., Llontop-Vélez, C. & Zambrano-Cabanillas, A. W. (2023). Efecto de ensilados de sangre e intestinos de pollo, como sustitutos parciales de la harina de pescado, en el crecimiento de alevinos de tilapia Oreochromis niloticus (Linnaeus, 1758). Revista de Investigaciones Veterinaria del Perú, 34(5), e24624. doi.org/10.15381/rivep.v34i5.24624 DOI: https://doi.org/10.15381/rivep.v34i5.24624

Diniz, F., & Martin, A. M. (1996). Use of response surface methodology to describe the combined effects of pH, temperature and E/S ratio on the hydrolysis of dogfish (Squalus acanthias) muscle. International Journal of Food Science and technology, 31(5), 419-426. doi: 10.1046/j.1365-2621.1996.00351.x DOI: https://doi.org/10.1046/j.1365-2621.1996.00351.x

Eissa, A., Yusuf, M., Karamat, N. A., Badran, M., Dessouki, A. A., Ismail, G., Ford, H., & Abdelatty, A. (2021). Effect of poultry offal silage with or without betaine supplementation on growth performance, intestinal morphometry, spleen histomorphology of Nile tilapia (Oreochromis niloticus) fingerlings. Journal of Animal Physiology and Animal Nutrition, 106(11). doi: 10.1111/jpn.13655 DOI: https://doi.org/10.1111/jpn.13655

Fagbenro, A., & Fasakin, E. (1996). Citric-acid-ensiled poultry viscera’s as protein supplement for catfish (Clarias gariepinus). Bioresource Technology, 58(1), 13-16. doi: 10.1016/S0960-8524(96)00081-8 DOI: https://doi.org/10.1016/S0960-8524(96)00081-8

Galali, Y., Omar, Z. A., & Sajadi, S. M. (2020). Biologically active components in by-products of food processing. Food Science & Nutrition, 8(7), 3004-3022. doi: 10.1002/fsn3.1665 DOI: https://doi.org/10.1002/fsn3.1665

Gao, Y., Lo, K. V., & Liao, P. H. (1992). Utilization of salmon farm mortalities: fish silage. Bioresource Technology, 41(2), 123-127. doi: 10.1016/0960-8524(92)90181-V DOI: https://doi.org/10.1016/0960-8524(92)90181-V

Gomes, L. F. S., Souza, S. N. M., Bariccatti, R. A., & Souza, J. (2000). Potencial de produção de biosiesel a partir do óleo de frango nas cooperativas do oeste do Paraná. Varia Scientia, 4(8), 141-149.

Guimarães, C. C., Maciel, I. V., Silva, A. F., Lopes, A. F., Carpio, K. C. R., & Silva, A. J. I. (2021). Aspectos biotecnológicos da silagem biológica de resíduos do Tambaqui. Revista em Agronegócio e Meio Ambiente, 14(1), 205-215. doi: 10.17765/2176-9168.2021v14n1e006861 DOI: https://doi.org/10.17765/2176-9168.2021v14n1e006861

Hisano, H., & Borghesi, R. (2011). Elaboração de silagem ácida de vísceras de surubim (Pseudoplatyustoma sp.). (Circular Técnica, 18). Embrapa, Dourados (MS), Brazil.

Hubbard, L. E., Givens, C. E., Griffin, D. W., Iwanowicz, L. R., Meyer, M. T., & Kolpin, D. W. (2020). Poultry litter as potential source of pathogens and other contaminants in groundwater and surface water proximal to large-scale confined poultry feeding operations. The Science of the Total Environment, 735, 139459. doi: 10.1016/j.scitotenv.2020.139459 DOI: https://doi.org/10.1016/j.scitotenv.2020.139459

Instrução Normativa no 62, de 26 de Agosto. Diário Oficial da União, Brasília, 26 de agosto de 2003. Seção 1. Ministério da Agricultura, Pecuária e Abastecimento_MAPA. Secretaria de Defesa Agropecuária - DISPOA.

Kannah, R. Y., Merrylin, J., Devi, T. P., Kavitha, S., Sivashanmungam, P., Kumar, G., & Banu, J. R. (2020). Food waste valorization: biofuels and value added product recovery. Bioresource Technology Reports, 11, 100524. doi: 10.1016/j.biteb.2020.100524 DOI: https://doi.org/10.1016/j.biteb.2020.100524

Kherrati, B., Faid, M., Elyachioui, M., & Wahmane, A. (1998). Process for recycling slaughterhouses waste and by-products by fermentation. Bioresource Techology, 63(1), 75-79. doi: 10.1016/S0960-8524(97)00081-3 DOI: https://doi.org/10.1016/S0960-8524(97)00081-3

Kompiang, I. P. (1981). Fish silage: its prospect and future in Indonesia. Indonesian Agriculture Resource & Development Journal, 3(1), 9-12.

McGauran, T., Dunne, N., Smyth, B. M., & Cunningham, E. (2021). Feasibility of the use of poultry waste as polymer additives and implications for energy, cost and carbon. Journal of Cleaner Production, 291 (125948). doi: 10.1016/j.jclepro.2021.125948 DOI: https://doi.org/10.1016/j.jclepro.2021.125948

Middleton, T. F., & Ferket, P. R. (2001a). Effect of level of acidification by phosphoric acid, storage temperature, and length of storage on the chemical and biological stability of ground poultry mortality carcasses. Poultry Science, 80(8), 1144-1153. doi: 10.1093/ps/80.8.1144 DOI: https://doi.org/10.1093/ps/80.8.1144

Middleton, T. F., Ferket, P. R., Boyd, L. C., Daniels, H. V., & Gallagher, M. L. (2001b). An evaluation of co-extruded poultry silage and culled jewel sweet potatoes as a feed ingredient for hybrid tilapia (Orecohromis niloticus x O. mossambicus). Aquaculture, 198(3-4), 269-280. doi: 10.1016/S0044-8486(00)00601-3 DOI: https://doi.org/10.1016/S0044-8486(00)00601-3

Malavolta, E., Vitti, G. C., & Oliveira, S. D. (1997). Avaliação do estado nutricional das plantas: princípios e aplicações (2a ed.). Potafos.

Oetterer, M. (1994). Produção de silagem a partir da biomassa residual de pescado. Alimentos e Nutrição, 5(1), 119-134.

Oliveira, M. M., Pimenta, M. E. S. G., Camargo, A. C. S., Fiorini, J. E., & Pimenta, C. J. (2006). Silagem de resíduos da filetagem de tilápia do Nilo (Oreochromis niloticus), com ácido fórmico - análise bromatológica, físico-química e miológica. Ciência e Agrotecnologia, 30(6), 1218-1223. doi: 10.1590/S1413-70542006000600027 DOI: https://doi.org/10.1590/S1413-70542006000600027

Pessoa, M. S., Abrão, F. O., Duarte, E. R., Camargo, A. C., & Faria, D. E., Fº. (2018). Physical-chemical and microbiological characteristics of acid silage of fi sh subjected to two processes of acidification and different storage periods. Zootecnia Tropical, 36(3-4), 97-105.

Rachmawati, D., & Samidjan, I. (2019). The effects of chicken feather silage substitution for fish meal in the diet on growth of saline tilapia fingerlings (Oreochromis niloticus). Proceedings of the International Conference on Tropical and Coastal Region Eco Development, Semarang, Indonésia, 246, 012015. doi: 10.1088/1755-1315/246/1/012015. DOI: https://doi.org/10.1088/1755-1315/246/1/012015

Raj, R., Raju, C. V., Lakshmisha, I. P., & Jag, P. (2018). Nutritional and biochemical properties of fish silage prepared as an ingredient in poultry feed. International Journal of Current Microbiology and Applied Science, 7(5), 423-428. doi: 10.20546/ijcmas.2018.705.054 DOI: https://doi.org/10.20546/ijcmas.2018.705.054

Raghunath, M. R., & McCurdy, A. R. (1987). Autolysis-resistant sediment in fish silage. Biological Wastes, 20(3), 227-239. doi: 10.1016/0269-7483(87)90157-1 DOI: https://doi.org/10.1016/0269-7483(87)90157-1

Rostagno, H. S., Albino, L. F. T., Calderano, A. A., Hannas, M. I., Sakomura, N. K., Perazzo, F. G., Rocha, G. C., Saraiva, A., Abreu, M. L. T., Genova, J. L., & Tavernari, F. C. (2024). Tabelas brasileiras de aves e suínos: composição de alimentos e exigências nutricionais (5a ed.). Suprema.

Seibel, N. F., & Souza-Soares, L. A. (2003). Produção de silagem química com resíduos de pescado marinho. Brazilian Journal Food Technology, 6(2), 333-337.

Shaw, D. M., Narasimha Rao, N. D., & Mahendrakar, N. S. (1998). Rapid fermentation for ensiling of poultry intestines. Bioresource Technology, 65(3), 247-249. doi: 10.1016/S0960-8524(98)80001-1 DOI: https://doi.org/10.1016/S0960-8524(98)80001-1

Sinnhuber, R. O., & Yu, T. C. (1977). The 2-thiobarbituric acid reaction, an objective measure of the oxidative deterioration occurring in fats and oils. Journal of Japan Oil Chemists Society, 26(5), 259-267. DOI: https://doi.org/10.5650/jos1956.26.259

Tatterson, I. N. (1982). Fish silage preparation, properties and uses. Animal Feed Science and Technology, 7(4), 153-159. doi: 10.1016/0377-8401(82)90050-5 DOI: https://doi.org/10.1016/0377-8401(82)90050-5

Vidotti, R. M., & Gonçalves, G. S. (2006). Produção e caracterização de silagem, farinha e óleo de tilápia e sua utilização na alimentação animal. Instituto de Pesca - APTA-SAA. http://www.pesca.sp.gov.br

Vidotti, R. M., Viegas, E. M. M., & Carneiro, D. J. (2003). Amino acid composition of processed fish silage using different raw materials. Animal Feed Science and Technology, 105(1-4), 199-204. doi: 10.1016/S0377-8401(03)00056-7 DOI: https://doi.org/10.1016/S0377-8401(03)00056-7

Vidotti, R. M. & Gonçalves, G. S. (2006). Produção e caracterização de silagem, farinha e óleo de tilapia e sua utilização na alimentação animal. Instituto de pesca - APTA-SAA. http://www.pesca.sp.gov.br

Voběrková, S., Maxianová, A., Schlosserová, N., Adamcová, D., Vršanská, M., Richtera, L., Gagić, M., Zloch, J., & Vaverková, M. D. (2020). Food waste composting. Is it really so simple as stated in scientific literature? A case study. The Science of the Total Environment, 723, 138202. doi: 10.1016/j.scitotenv.2020.138202 DOI: https://doi.org/10.1016/j.scitotenv.2020.138202

Downloads

Published

2024-11-28

How to Cite

Inocente Filho, C., Ramos, B. M. de O., Yamashita, F., Tamanini, R., Prado-Calixto, O. P., Poveda-Parra, A. R., & Mizubuti, I. Y. (2024). Optimization of obtaining process of acid silage from poultry carcasses by response surface methodology. Semina: Ciências Agrárias, 45(6), 1921–1942. https://doi.org/10.5433/1679-0359.2024v45n6p1921

Issue

Section

Articles