Suplementação com óleo de girassol em dietas de vacas em lactação: parâmetros zootécnicos

Autores

DOI:

https://doi.org/10.5433/1679-0359.2024v44n2p329

Palavras-chave:

Perfil metabólico sanguíneo, Digestibilidade, Helianthus annus, Dieta rica em gordura, Consumo.

Resumo

Oito vacas Jersey (2ª-4ª lactação; peso corporal 443 ± 63 kg; produção de leite, 21±2.2 kg dia/dia) foram utilizadas em delineamento duplo quadrado latino 4x4 para avaliar se a inclusão de níveis crescentes de óleo de girassol no concentrado até o limite de 110.0 g kg-1 DM of EE, em substituição ao milho,  tem impacto sobre a produção e composição do leite, eficiência alimentar, balanço energético, consumo e digestibilidade das dietas, e o perfil de ácidos graxos da gordura do leite de vacas da raça Jersey. Para a dieta controle não houve inclusão de óleo de girassol, com concentração de extrato etéreo (EE) de 37.6 g kg-1 MS entre a mistura de concentrado e volumoso, os demais tratamentos consistiram na inclusão de níveis crescentes de óleo de girassol nas concentrações 65.3; 85.6 ou 110.0 g kg-1 de EE na MS. O aumento do EE nas dietas não afetou o consumo de matéria seca, fibra em detergente neutro ou proteína bruta. Houve aumento linear nos coeficientes de digestibilidade para matéria orgânica, proteína bruta, EE, fibra em detergente neutro e níveis sanguíneos de colesterol. Os tratamentos não afetaram a produção de leite, teor de gordura, lactose ou sólidos totais. É possível utilizar até o limite de 110.0 g kg-1 de EE na dieta em substituição ao grão de milho, diminuindo a quantidade de concentrado ingerido.

Downloads

Não há dados estatísticos.

Biografia do Autor

Fábio Antunes Rizzo, Universidade de Caxias do Sul

Dr. em Zootecnia, Centro de Medicina Veterinária, Universidade de Caxias do Sul, UCS, Caxias do Sul, RS, Brasil.

Ana Carolina Fluck, Universidade Federal de Pelotas

Ph.D. Dra. em Zootecnia, Programa de Pós-Graduação em Zootecnia, Faculdade Eliseu Maciel, Universidade Federal de Pelotas, UFPel, Capão do Leão, RS, Brasil.

Jorge Schafhäuser Junior, Empresa Brasileira de Pesquisa Agropecuária

Ph.D. Dr. em Zootecnia, Pesquisador da Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA, Pelotas, RS, Brasil.

Rudolf Brand Scheibler, Universidade Federal de Pelotas

Ph.D. Dr. em Zootecnia, Programa de Pós-Graduação em Zootecnia, Faculdade Eliseu Maciel, Universidade Federal de Pelotas, UFPel, Capão do Leão, RS, Brasil.

José Laerte Nörnberg, Universidade Federal de Santa Maria

Ph.D. Dr. em Zootecnia, Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Maria, UFSM, Santa Maria, RS, Brasil.

Diego Prado de Vargas, Universidade de Caxias do Sul

Ph.D. Doutoranda em Ciência e Tecnologia de Alimentos, Centro de Medicina Veterinária, Universidade de Santa Cruz do Sul, UNISC, Santa Cruz do Sul, RS, Brasil.

Lívia Argoud Lourenço, Universidade Federal de Pelotas

Ph.D. Dra. em Zootecnia, Programa de Pós-Graduação em Zootecnia, Faculdade Eliseu Maciel, Universidade Federal de Pelotas, UFPel, Capão do Leão, RS, Brasil.

Ana Paula Binato de Souza, Universidade do Vale do Taquari

Ph.D. Dra. em Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari, UNIVATES, Lajeado, RS, Brasil.

Jamir Luís Silva da Silva, Empresa Brasileira de Pesquisa Agropecuária

Ph.D. Dr. em Zootecnia, Pesquisador da Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA, Pelotas, RS, Brasil.

Referências

Association of Official Analytical Chemistry (2019). Official methods of analysis (21nd ed.). AOAC.

Barletta, R. V., Gandra, J. R., Bettero, V. P., Araújo, C. E., Del Valle, T. A., Almeida, G. F., Jesus, E. F., Mingoti, R. D., Benevento, B. C., Freitas, J. E., Jr., & Rennó, F. P. (2016). Ruminal biohydrogenation and abomasal flow of fatty acids in lactating cows: Oilseed provides ruminal protection for fatty acids. Animal Feed Science and Technology, 219(2016), 111-121. doi: 10.1016/j.anifeedsci.2016.06.011 DOI: https://doi.org/10.1016/j.anifeedsci.2016.06.011

Benchaar, C., Hassanat, F., Martineau, R., & Gervais, R. (2015). Linseed oil supplementation to dairy cows fed diets based on red clover silage or corn silage: Effects on methane production, rumen fermentation, nutrient digestibility, N balance, and milk production. Journal of Dairy Science, 98(11), 7993-8008. doi: 10.3168/jds.2015-9398 DOI: https://doi.org/10.3168/jds.2015-9398

Bionaz, M., Vargas-Bello-Pérez, E., & Busato, S. (2020). Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. Journal of Animal Science and Biotechnology, 11(1), 110. doi: 10.1186/s40104-020-00512-8 DOI: https://doi.org/10.1186/s40104-020-00512-8

Chamberlain, M. B., & Peters, E. J. de. (2016). Impacts of feeding lipid supplements high in palmitic acid or stearic acid on performance of lactating dairy cows. Journal of Applied Animal Research, 45(1), 126-135. doi: 10.1080/09712119.2015.1124327 DOI: https://doi.org/10.1080/09712119.2015.1124327

Coppock, C. E., & Wilks, D. L. (1991). Supplemental fat in high-energy rations for lactating cows: effects on intake, digestion, milk yield, and composition. Journal of Animal Science, 69(9), 3826-3837. doi: 10.2527/1991.6993826x DOI: https://doi.org/10.2527/1991.6993826x

Cunniff, P. (1996). Official methods of analysis. 15th ed. (2nd rev.). Association of Official Analytical Chemistry, Gaithersburg, Maryland.

Elmhadi, M. E., Ali, D. K., Khogali, M. K., & Wang, H. (2022). Subacute ruminal acidosis in dairy herds: Microbiological and nutritional causes, consequences, and prevention strategies. Animal Nutrition, 10(2022), 148-155. doi: 10.1016/j.aninu.2021.12.008 DOI: https://doi.org/10.1016/j.aninu.2021.12.008

Frank, E., Livshitz, L., Portnick, Y., Kamer, H., Alon, T., & Moallem, U. (2022). The effects of high-fat diets from calcium salts of palm oil on milk yields, rumen environment, and digestibility of high-yielding dairy cows fed low-forage diet. Animals, 12(16), 2081. doi: 10.3390/ani12162081 DOI: https://doi.org/10.3390/ani12162081

Freitas, J. E., Jr., Takiya, C. S., Del Valle, T. A., Barletta, R. V., Venturelli, B. C., Vendramini, T. H. A., Mingoti, R. D., Calomeni, G. D., Gardinal, R., Gandra, J. R., Bettero, V. P., Ferreira de Jesus, E., Oliveira, M. D. S., & Rennó, F. P. (2018). Ruminal biohydrogenation and abomasal flow of fatty acids in lactating cows fed diets supplemented with soybean oil, whole soybeans, or calcium salts of fatty acids. Journal of Dairy Science, 101(9), 7881-7891. doi: 10.3168/jds.2017-13666 DOI: https://doi.org/10.3168/jds.2017-13666

Hubner, A., Canisso, I. F., Peixoto, P. M., Coelho, W. M., Jr., Ribeiro, L., Aldridge, B. M., Menta, P., Machado, V. S., & Lima, F. S. (2022). Characterization of metabolic profile, health, milk production, and reproductive outcomes of dairy cows diagnosed with concurrent hyperketonemia and hypoglycemia. Journal of Dairy Science, 105(11), 9054-9069. doi: 10.3168/jds.2021-21327 DOI: https://doi.org/10.3168/jds.2021-21327

Kaltenegger, A., Humer, E., Pacífico, C., & Zebeli, Q. (2021). Feeding dairy cows bakery by-products enhanced nutrient digestibility but affected fecal microbial composition and pH in a dose-dependent manner. Journal of Dairy Science, 104(7), 7781-7793. doi: 10.3168/jds.2020-19998 DOI: https://doi.org/10.3168/jds.2020-19998

Kaneko, J. J., Harvey, J. W., & Bruss, M. L. (2008). Clinical biochemistry of domestic animals (6nd ed.). Academic Press.

Kliem, K. E., Humphries, D. J., Reynolds, C. K., Morgan, R., & Givens, D. I. (2017). Effect of oilseed type on milk fatty acid composition of individual cows, and also bulk tank milk fatty acid composition from commercial farms. Animal, 11(2), 354-364. doi: 10.1017/S1751731116001403 DOI: https://doi.org/10.1017/S1751731116001403

Lima, L. S., Santos, G. T., Schogor, A. B., Damasceno, J. C., Marchi, F. E., Santos, N. W., Santos, F. S., & Petit, H. V. (2014). Effect of abomasal or ruminal supplementation of citrus pulp and soybean oil on nutrient digestibility and ruminal fermentation of dairy cows. Animal Feed Science and Technology, 189(2014), 123-129. doi: 10.1016/j.anifeedsci.2013.12.008 DOI: https://doi.org/10.1016/j.anifeedsci.2013.12.008

Matthews, C., Crispie, F., Lewis, E., Reid, M., O’Toole, P. W., & Cotter, P. D. (2019). The rumen microbiome: a crucial consideration when optimizing milk and meat production and nitrogen utilization efficiency. Gut Microbes, 10(2), 1-18. doi: 10.1080/19490976.2018.1505176 DOI: https://doi.org/10.1080/19490976.2018.1505176

Meignan, T., Lechartier, C., Chesneau, G., Bareille, N. (2017). Effects of feeding extruded linseed on production performance and milk fatty acid profile in dairy cows: a meta-analysis. Journal of Dairy Science, 100(6), 4394-4408. doi: 10.3168/jds.2016-11850 DOI: https://doi.org/10.3168/jds.2016-11850

Mohammadabadi, T. T., Chaji, M., Direkvandi, E., & Alqaisi, O. (2021). O. Effect of replacing alfalfa hay with Leucaena leucocephala (L. Leucocephala) leaves on in vitro gas production, digestibility and in situ degradability in buffalo. Acta Scientiarum: Animal Science, 43, e52129. doi: 10.4025/actascianimsci.v43i1.52129 DOI: https://doi.org/10.4025/actascianimsci.v43i1.52129

Newbold, C. J., De La Fuente, G., Belanche, A., Ramos-Morales, E., & McEwan, N. R. (2015). The role of ciliate protozoa in the rumen. Frontiers in Microbiology, 6, 1313. doi: 10.3389/fmicb.2015.01313 DOI: https://doi.org/10.3389/fmicb.2015.01313

National Research Council (2001). Nutrient requirements of dairy cattle (7nd rev. ed.). National Academy of Science.

Oliveira, M. X. S., Palma, A. S. V., Reis, B. R., Franco, C. S. R., Marconi, A. P. S., Shiozaki, F. A., Reis, L. G., Salles, M. S. V., & Netto, A. S. (2021). Inclusion of soybean and linseed oils in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet. PLoS One, 16(2), e0246357. doi: 10.1371/journal.pone.0246357 DOI: https://doi.org/10.1371/journal.pone.0246357

Panahiha, P., Mirzaei-AlamoutI, H., Kazemi-Bonchenari, M., & Aschenbach, J. R. (2022). Growth performance, nutrient digestibility, and ruminal fermentation of dairy calves fed starter diets with alfalfa hay versus corn silage as forage and soybean oil versus palm fatty acids as fat source. Journal of Dairy Science, 105(12), 9597-9609. doi: 10.3168/jds.2022-22165 DOI: https://doi.org/10.3168/jds.2022-22165

Ramos, S. C., Jeong, C. D., Mamuad, L. L., Kim, S. H., Kang, S. H., Kim, E. T. D., Cho, Y. I., Lee, S. S., & Lee, S. S. (2021). Diet Transition from high-forage to high-concentrate alters rumen bacterial community composition, epithelial transcriptomes and ruminal fermentation parameters in dairy cows. Animals, 11(3), 838. doi: 10.3390/ani11030838 DOI: https://doi.org/10.3390/ani11030838

Rodrigues, J. P. P., Paula, R. M. de, Rennó, L. N., Costa, G. P., Hamade, V. C. E., Valadares, S. C., Fº., Rennó, F. P., & Marcondes, M. I. (2019). Effects of soybean oil supplementation on performance, digestion and metabolism of early lactation dairy cows fed sugarcane-based diets. Animal, 13(6), 1198-1207. doi: 10.1017/s1751731118002781 DOI: https://doi.org/10.1017/S1751731118002781

Salles, M., D’Abreu, L., Roma Júnior, L., Jr., César, M., Guimarães, J., Segura, J. G., Rodrigues, C., Zanetti, M. A., Pfrimer, K., & Netto, A. (2019). Inclusion of sunflower oil in the bovine diet improves milk nutritional profile. Nutrients, 11(2), 481. doi: 10.3390/nu11020481 DOI: https://doi.org/10.3390/nu11020481

Scheibler, R.B., Schafhauser Junior, J., Rizzo, F.A., Nörnberg, J.L., Vargas, D.P., Silva, J.L.S., Fluck, A.C. & Fioreze, V.I. (2015). Replacement of corn grain by brown rice grain in dairy cow rations: Nutritional and productive effects, Animal Feed Science and Technology, 208 (2015), 214-219. doi: 10.1016/j.anifeedsci.2015.07.013 DOI: https://doi.org/10.1016/j.anifeedsci.2015.07.013

Statistical Analysis System Institute (2013). SAS/STAT® 13. 1 User’s guide. SAS Institute Inc.

Silva, C. S., Gama, M. A. S., Silva, E. A. M., Ribeiro, E. F., Souza, F. G., Monteiro, C. C. F., Mora-Luna, R. E., Oliveira, J. C. V., Santos, D. C., & Ferreira, M. D. A (2023). Nutritional quality of milk fat from cows fed full-fat corn germ in diets containing cactus opuntia and sugarcane bagasse as forage sources. Animals, 13(4), 568. doi: 10.3390/ani13040568 DOI: https://doi.org/10.3390/ani13040568

Silva, D. J., & Queiroz, A. C. de. (2002). Análise de alimentos: métodos químicos e biológicos. UFV.

Sjaunja, L. O., Baevre, L., Junkkarinen, L., & Pedersen, J. A. (1990). Nordic proposal for an energy corrected milk (ECM) formula. Proceedings of the Session of International Committee of Recording and Productivity of Milk Animal, Paris, France, 27.

Souza, A. P. B., Schafhauser, J., Jr., Scheibler, R. B., Fluck, A. C., Rizzo, F. A., Nörnberg, J. L., Vargas, D. P., & Lourenço, L. A. (2023). Supplementation with lipid sources in diets for Jersey cows in the first third of lactation. Pesquisa Agropecuária Brasileira, 58(1), e03149. doi: 10.1590/S1678-3921.pab2023.v58.03149 DOI: https://doi.org/10.1590/s1678-3921.pab2023.v58.03149

Suksombat, W., Than, L. P., Meeprom, C., & Mirattanaphrai, R. (2014). Effects of linseed oil or whole linseed supplementation on performance and milk Fatty Acid composition of lactating dairy cows. Asian-Australasian Journal of Animal Science, 27(7), 951-959. doi: 10.5713/ajas.2013.13665 DOI: https://doi.org/10.5713/ajas.2013.13665

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2 DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Vargas, J. E., Andrés, S., López-Ferreras, L., & López, S. (2020). Effects of supplemental plant oils on rumen bacterial community profile and digesta fatty acid composition in a continuous culture system (RUSITEC). Anaerobe, 61(2020), 102143. doi: 10.1016/j.anaerobe.2019.102143 DOI: https://doi.org/10.1016/j.anaerobe.2019.102143

Vargas-Bello-Pérez, E., Cancino-Padilla, N., Romero, J., & Garnsworthy, P. C. (2016). Quantitative analysis of ruminal bacterial populations involved in lipid metabolism in dairy cows fed different vegetable oils. Animal, 10(11), 1821-1828. doi: 10.1017/s1751731116000756 DOI: https://doi.org/10.1017/S1751731116000756

Ungerfeld, E. M., Urrutia, N. L., Vásconez-Montúfar, C., & Morales, R. (2019). Factors associated with the content of mammary-synthesized fatty acids in milk fat: a meta-analysis. Journal of Dairy Science, 102(5), 4105-4117. doi: 10.3168/jds.2018-15157 DOI: https://doi.org/10.3168/jds.2018-15157

Williams, S. R. O., Milner, T. C., Garner, J. B., Moate, P. J., Jacobs, J. L., Hannah, M. C., Wales, W. J., & Marett, L. C. (2021). Dietary fat and betaine supplements offered to lactating cows affect dry matter intake, milk production and body temperature responses to an acute heat challenge. Animals, 11(11), 3110. doi: 10.3390/ani11113110 DOI: https://doi.org/10.3390/ani11113110

Ye, J. A., Wang, C., Wang, H. F., Ye, H. W., Wang, B. X., Liu, H. Y., Wang, Y. M., Yang, Z. Q., & Liu, J. X. (2009). Milk production and fatty acid profile of dairy cows supplemented with flaxseed oil, soybean oil, or extruded soybeans. Acta Agriculturae Scandinavica - Section A, 59(2), 121-129. doi: 10.1080/09064700903082252 DOI: https://doi.org/10.1080/09064700903082252

Downloads

Publicado

2024-03-19

Como Citar

Rizzo, F. A., Fluck, A. C., Schafhäuser Junior, J., Scheibler, R. B., Nörnberg, J. L., Vargas, D. P. de, … Silva, J. L. S. da. (2024). Suplementação com óleo de girassol em dietas de vacas em lactação: parâmetros zootécnicos. Semina: Ciências Agrárias, 44(2), 329–344. https://doi.org/10.5433/1679-0359.2024v44n2p329

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >> 

Artigos Semelhantes

1 2 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.