Effects of including autolyzed yeast in the finishing of feedlot steers

Authors

DOI:

https://doi.org/10.5433/1679-0359.2021v42n4p2471

Keywords:

Carcass finishing, Digestibility, Food additive, Prebiotics, Saccharomyces cerevisiae.

Abstract

Functional additives, such as autolyzed yeasts, have been used to achieve greater production efficiency and animal health. These compounds are also alternatives to the use of performance-enhancing antimicrobials. The objective was to evaluate the productive performance, ingestive behavior, apparent digestibility of feed DM and the carcass characteristics of beef steers finished in feedlot receiving autolyzed yeasts in the diet. The experimental design was randomized blocks, consisting of three treatments and six repetitions, where each repetition was represented by a stall with two animals. 36 bulls, ½ Angus × ½ Nelore blood, from the same herd, with an average age of 11 months and an average body weight of ± 330 kg were used. The treatments were as follows: CON - yeast-free diet; Y4 - yeast diet (4 g animal day-1) and Y7 - yeast diet (7 g animal day-1). The product used is a functional ingredient containing the yeast Saccharomyces cerevisiae. The inclusion of autolyzed yeasts resulted in greater daily body weight gain and better feed conversion in the initial feedlot phase. The apparent digestibility of DM of diets containing autolyzed yeast was superior to the control diet, and its use did not interfere with the animal ingestive behavior. Supplementation with autolyzed yeasts at the inclusion level of 4 g day-1 promoted better results in the finishing of feedlot steers, and that the supplemented groups (4 g animal day-1 and 7 g animal day-1) achieved the same degree of carcass finishing, higher than the control group.

Author Biographies

Giovanna Bobato Pontarolo, Universidade Estadual do Centro Oeste

Student of the Master’s Program, Graduate Program in Veterinary Sciences, Universidade Estadual do Centro Oeste, UNICENTRO, Guarapuava, PR, Brazil.

Mikael Neumann, Universidade Estadual do Centro Oeste

Prof. PhD., Graduate Program in Veterinary Sciences, Graduate Program in Plant Production, UNICENTRO, Guarapuava, PR, Brazil.

Fernando Braga Cristo, Universidade Estadual do Centro Oeste

Student of the Master’s Program, Graduate Program in Veterinary Sciences, Universidade Estadual do Centro Oeste, UNICENTRO, Guarapuava, PR, Brazil.

Edelmir Silvio Stadler Júnior, Universidade Estadual do Centro Oeste

Master in Veterinary Sciences, Graduate Program in Veterinary Sciences, UNICENTRO, Guarapuava, PR, Braail.

André Martins de Souza, Universidade Estadual de Londrina

Student of the Doctoral Program, Graduate Program in Animal Science, Universidade Estadual de Londrina, UEL, Londrina, PR, Brazil.

Milena Pontarolo Machado, Universidade Estadual do Centro Oeste

Undergraduate Student in Veterinary Medicine, UNICENTRO, Guarapuava, PR, Brazil.

Melina Aparecida Bonato, ICC Brazil

Research & Development Department, ICC Brazil, São Paulo, SP, Brasil.

Liliana Longo Borges, ICC Brazil

Research & Development Department, ICC Brazil, São Paulo, SP, Brasil.

Valter Harry Bumbieris Junior, Universidade Estadual de Londrina

Prof. PhD., Department of Animal Science, UEL, PR, Brazil.

Marlon Richard Hilario da Silva, Universidade Federal do Pará

Prof. PhD., Universidade Federal do Pará, UFPA, Belém, PA, Brazil

References

Armato, L., Gianesella, M., Morgante, M., Fiore, E., Rizzo, M., Giudice, E., & Piccione, G. (2016). Rumen volatile fatty acids× dietary supplementation with live yeast and yeast cell wall in feedlot beef cattle. Acta Agriculturae Scandinavica, Section A Animal Science, 66(2), 119-124. doi: 10.1080/09064702.20 16.1272628

Association of Official Analytical Chemists (1995). Official methods of analysis (16nd ed.). Washington, D.C.: AOAC.

Broadway, P. R., Carroll, J. A., & Sanchez, N. C. B. (2015). Live yeast and yeast cell wall supplements enhance immune function and performance in food-producing livestock: a review. Microorganisms, 3(3), 417-427. doi: 10.3390/microorganisms3030417

Carro, M. D., López, S., Valdés, C., & Ovejero, F. J. (1999). Effect of DL-malate on mixed ruminal microorganism fermentation using the rumen simulation technique (RUSITEC). Animal Feed Science and Technology, 79(4), 279-288. doi: 10.1016/S0377-8401(99)00034-6

Freitas, H. S., Alcalde, C. R., Lima, L. S. de, Zeoula, L. M., Costa, L. S. E. da, & Lima, L. R. de. (2011). Digestibilidade total e balanço de nitrogênio em cabritos recebendo rações contendo levedura seca. Acta Scientiarum. Animal Sciences, 33(3), 281-286. doi: 10.4025/actascianimsci.v33i3.10175

Frizzo, L. S., Soto, L. P., Bertozzi, E., Zbrun, M. V., Signorini, M. L., Sequeira, G.,... Rosmini, M. R. (2011). Intestinal populations of Lactobacilli and coliforms after in vivo Salmonella dublin challenge and their relationship with microbial translocation in calves supplemented with lactic acid bacteria and lactose. Animal Feed Science and Technology, 170(1-2), 12-20. doi: 10.1016/j.anifeedsci.2011.07.016

Fuller, R. (1989). Probióticos no homem e nos animais. Journal of Applied Bacteriology, 66(5), 365-378.

Gifford, C. A., Holland, B. P., Mills, R. L., Maxwell, C. L., Farney, J. K., Terrill, S. J.,… Krehbiel, C. R. (2012). Growth and development symposium: impacts of inflammation on cattle growth and carcass merit. Journal of Animal Science, 90(5), 1438-1451. doi: 10.2527/jas.2011-4846

Goering, H. K., & Van Soest, P. J. (1970). Forage fiber analysis: apparatus reagents, procedures and some applications. Washington: Agricultural Handbook, D.C.

Hassan, H. M. (2011). Antioxidant and immunostimulating activities of yeast (Saccharomyces cerevisiae) autolysates. World Applied Sciences Journal, 15(8), 1110-1119.

Kumar, D. S., Prasad, C. S., & Prasad, R. M. V. (2013). Effect of yeast culture (Saccharomyces cerevisiae) on ruminal microbial population in buffalo bulls. Buffalo Bulletin, 32(2), 116-119. Recovered from http:// ibic.lib.ku.ac.th/e-Bulletin/32-2.pdf#page=50

López-Soto, M. A., Valdés-García, Y. S., Plascencia, A., Barreras, A., Castro-Perez, B. I., Estrada-Angulo, A.,… Zinn, R. A. (2013). Influence of feeding live yeast on microbial protein synthesis and nutrient digestibility in steers fed a steam-flaked corn-based diet. Acta Agriculturae Scandinavica, Section A–Animal Science, 63(1), 39-46. doi: 10.1080/09064702.2013.779744

Mao, H. L., Mao, H. L., Wang, J. K., Liu, J. X., & Yoon, I. (2013). Effects of Saccharomyces cerevisiae fermentation product on in vitro fermentation and microbial communities of low-quality forages and mixed diets. Journal of Animal Science, 91(7), 3291-3298. doi: 10.2527/jas.2012 -5851

Mattila-Sandholm, T., Myllärinen, P., Crittenden, R., Mogensen, G., Fondén, R., & Saarela, M. (2002). Technological challenges for future probiotic foods. International Dairy Journal, 12(2-3), 173-182. doi: 10.1016/S0958-6946(01)00099-1

Morrison, S. J., Dawson, S., & Carson, A. F. (2010). The effects of mannan oligosaccharide and Streptococcus faecium addition to milk replacer on calf health and performance. Livestock Science, 131(2-3), 292-296. doi: 10.1016/j.livsci.2010.04.002

Muller, L. (1987). Normas para avaliação de carcaças e concurso de carcaça de novilhos. Santa Maria: UFSM.

Neubauer, V., Petri, R., Humer, E., Kröger, I., Mann, E., Reisinger, N.,... Zebeli, Q. (2018). High-grain diets supplemented with phytogenic compounds or autolyzed yeast modulate ruminal bacterial community and fermentation in dry cows. Journal of Dairy Science, 101(3), 2335-2349. doi: 10.3168/jds.2017-13565

Nocek, J. E., Holt, M. G., & Oppy, J. (2011). Effects of supplementation with yeast culture and enzymatically hydrolyzed yeast on performance of early lactation dairy cattle. Journal of Dairy Science, 94(8), 4046-4056. doi: 10.3168/jds.2011-4277

Phillip, Y. L., & Iskander, D. (2016). Effect of yeast autolysate feed additive on performance of suckling and growing Buffalo Calves. Journal of Animal and Poultry Production, 7(12), 439-446. doi: 10.21608/JAP PMU.2016.48753

Ponce, C. H., Schutz, J. S., Elrod, C. C., Anele, U. Y., & Galyean, M. L. (2012). Effects of dietary supplementation of a yeast product on performance and morbidity of newly received beef heifers. The Professional Animal Scientist, 28(6), 618-622. doi: 10.15232/S1080-7446(15)30419-8

Pukrop, J. R., Brennan, K. M., Funnell, B. J., & Schoonmaker, J. P. (2018). Effect of a hydrolyzed mannan-and glucan-rich yeast fraction on performance and health status of newly received feedlot cattle. Journal of Animal Science, 96(9), 3955-3966. doi: 10.1093/jas/sky255

Salinas-Chavira, J., Arzola, C., González-Vizcarra, V., Manríquez-Núñez, O. M., Montaño-Gómez, M. F., Navarrete-Reyes, J. D.,… Zinn, R. A. (2015). Influence of feeding enzymatically hydrolyzed yeast cell wall on growth performance and digestive function of feedlot cattle during periods of elevated ambient temperature. Asian-Australasian Journal of Animal Sciences, 28(9), 1288. doi: 10.5713/ajas.15.0061

Santos, L. C. (2019). Níveis de complexo enzimático na dieta alimentar de novilhos confinados. Dissertação de mestrado, Universidade Estadual do Centro Oeste, Guarapuava, PR, Brasil. Recuperado de https://www2.unicentro.br/ppgvet/files/2019/03/Disserta%C3%A7%C3%A3o-LESLEI-CAROLINE-SANTOS.pdf?x26325

Statistical Analysis System Institute (1993). SAS language reference. Version 6. Cary, NC: SAS Institute Inc.

Sauer, N., Mosenthin, R., & Bauer, E. (2011). The role of dietary nucleotides in single-stomached animals. Nutrition Research Reviews, 24(1), 46-59. doi: 10.1017/S0954422410000326

Silva, D. J., & Queiroz, A. C. (2009). Análise de Alimentos, métodos químicos e biológicos. Viçosa, MG: Universidade Federal de Viçosa.

Song, S. K., Beck, B. R., Kim, D., Park, J., Kim, J., Kim, H. D., & Ringø, E. (2014). Prebiotics as immunostimulants in aquaculture: a review. Fish & Shellfish Immunology, 40(1), 40-48. doi: 10.1016/j. fsi.2014.06.016

Spring, P., Wenk, C., Connolly, A., & Kiers, A. (2015). A review of 733 published trials on Bio-Mos®, a mannan oligosaccharide, and Actigen®, a second generation mannose rich fraction, on farm and companion animals. Journal of Applied Animal Nutrition, 3, 1-11. doi: 10.1017/jan.2015.6

Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Análises de solo, plantas e outros materiais (Vol. 174). Porto Alegre: UFRGS.

Ungerfeld, E. M., & Forster, R. J. (2011). A meta-analysis of malate effects on methanogenesis in ruminal batch cultures. Animal Feed Science and Technology, 166(1), 282-290. doi: 10.1016/j.anifeedsci.2011. 04.018

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Symposium: carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. Journal of Dairy Science, 74(10), 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2

Vetvicka, V., Vannucci, L., & Sima, P. (2014). The effects of β-glucan on pig growth and immunity. The Open Biochemistry Journal, 8(1), 89. doi: 10.2174/1874091X01408010089

Weiss, W. P., Conrad, H. R., & Pierre, N. S. (1992). A theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Animal Feed Science and Technology, 39(1-2), 95-110. doi: 10.1016/0377-8401(92)90034-4.

Young, T. R., Ribeiro, F. R. B., Sanchez, N. B., Carroll, J. A., Jennings, M. A., Cribbs, J. T.,… Johnson, B. J. (2017). Yeast cell wall supplementation alters the performance and health of beef heifers during the receiving period. The Professional Animal Scientist, 33(2), 166-175. doi: 10.15232/pas.2016-01511

Downloads

Published

2021-05-20

How to Cite

Pontarolo, G. B., Neumann, M., Cristo, F. B., Stadler Júnior, E. S., Souza, A. M. de, Machado, M. P., … Silva, M. R. H. da. (2021). Effects of including autolyzed yeast in the finishing of feedlot steers. Semina: Ciências Agrárias, 42(4), 2471–2488. https://doi.org/10.5433/1679-0359.2021v42n4p2471

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>