Combinação de levedura ativa com inativa e seu uso como aditivo para borregas confinadas: parâmetros nutricionais

Autores

DOI:

https://doi.org/10.5433/1679-0359.2025v46n1p169

Palavras-chave:

Amido, Ovinos, Probiótico, Prebiótico, Saccharomyces cerevisiae.

Resumo

Objetivou-se avaliar os efeitos da adição de níveis crescentes da combinação de levedura ativa e inativa sobre o consumo e digestibilidade aparente da matéria seca (MS) e seus componentes, e balanços de nitrogênio e de energia de borregas alimentadas com dietas de alto concentrado. Foram utilizadas 5 borregas mestiças Dorper x Santa Inês com peso inicial médio de 40,40 ± 0,15 kg, que foram alojadas em gaiolas individuais de metabolismo. Os tratamentos consistiram em 5 níveis de levedura ativa mais inativa [Milk Sacc X® - Alltech®, Maringá, Paraná, Brasil, 5,0 x 108 Unidades formadoras de colônia (UFC)], sendo 0; 0,15; 0,3; 0,45 e 0,6% da MS ofertada em kg animal-1 dia-1 de ração, que continha relação 20: 80 de silagem de milho: concentrado com base na MS. O delineamento experimental utilizado foi um quadrado latino 5 x 5, com 5 animais e 5 períodos, totalizando 25 unidades experimentais. Os dados foram submetidos a análise de regressão com nível de significância de 5%. Não foram detectados efeitos dos tratamentos sobre as variáveis de consumo, ademais, houve significância para falta de ajuste do modelo (FAM), sendo a média para consumo de MS de 1343.0 g animal-1 dia-1. Não houve efeito dos tratamentos sobre as variáveis de digestibilidade aparente, com média de 86,89% para digestibilidade da MS. As variáveis de balanço de N não foram afetadas pelos níveis do aditivo, pois, o efeito para FAM indica que os dados não se ajustaram ao modelo de regressão. O N retido médio foi de 45,3 g animal-1 dia-1. Os dados de energia bruta (EB) ingerida, energia digestível (ED), energia metabolizável (EM) e metabolizabilidade não se ajustaram ao modelo de regressão, com médias de 5549, 2685, 2504 kcal animal-1 dia-1 e 42,6%, respectivamente. As EB fecal e urinária não foram influenciadas pelos tratamentos. A combinação de levedura ativa com inativa não altera o consumo, digestibilidade de nutrientes, balanço de N e de energia de borregas alimentadas com dieta de alto concentrado.

Downloads

Não há dados estatísticos.

Biografia do Autor

Tays Raniellen Miranda Feitosa, Universidade Federal do Norte do Tocantins

Dra. em Zootecnia, Centro de Ciências Agrárias, Universidade Federal do Norte do Tocantins, UFNT, Araguaína, TO, Brasil.

Luciano Fernandes Sousa, Universidade Federal do Norte do Tocantins

Dr. em Zootecnia, Centro de Ciências Agrárias, Universidade Federal do Norte do Tocantins, UFNT, Araguaína, TO, Brasil.

Deborah Alves Ferreira, Universidade Federal do Norte do Tocantins

Dra. em Zootecnia, Centro de Ciências Agrárias, Universidade Federal do Norte do Tocantins, UFNT, Araguaína, TO, Brasil.

Karla Alves Oliveira, Instituto Federal do Triângulo Mineiro

Dra. em Zootecnia, Instituto Federal do Triângulo Mineiro, IFTM, Uberaba, MG, Brasil.

Erica Beatriz Schultz, Universidade Federal de Viçosa

Dra. em Zootecnia, Departamento de Zootecnia, Universidade Federal de Viçosa, UFC, Viçosa, MG, Brasil.

Marcela Rodrigues de Oliveira, Universidade Federal de Uberlândia

Aluna do Curso de Mestrado em Produção Animal, Universidade Federal de Uberlândia, UFU, Minas Gerais, Brasil.

Marco Túlio Santos Siqueira, Universidade Estadual Paulista (Unesp)

M.e em Zootecnia pela Universidade Estadual Paulista Júlio de Mesquita Filho, UNESP/FCAV, Jaboticabal, SP, Brasil.

Lucas Eduardo Gonçalves Vilaça, Universidade Federal de Uberlândia

Aluno do Curso de Mestrado em Produção Animal, Universidade Federal de Uberlândia, UFT, Uberlândia, Minas Gerais, Brasil.

Jhone Tallison Lira de Sousa, Universidade Federal do Norte do Tocantins

Dr. em Zootecnia, Centro de Ciências Agrárias, Universidade Federal do Norte do Tocantins, UFNT, Araguaína, TO, Brasil.

Gilberto de Lima Macedo Junior, Universidade Federal de Uberlândia

Dr. em Zootecnia, UFT, Uberlândia, MG, Brasil.

Referências

Alzahal, O., Dionissopoulos, L., Laarman, A. H., Walker, N., & McBride, B. W. (2014). Active dry Saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows. Journal of Dairy Science, 97(12), 7751-7763. doi: 10.3168/jds.2014-8212 DOI: https://doi.org/10.3168/jds.2014-8212

Amin, A. B., & Mao, S. (2021). Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: a review. Animal Nutrition, 7(1), 31-41. doi: 10.1016/j.aninu.2020.10.005 DOI: https://doi.org/10.1016/j.aninu.2020.10.005

Anadón, A., Ares, I., Martínez-Larrañaga, M. R., & Martínez, M. A. (2019). Prebiotics and probiotics in feed and animal health. In Gupta, R., Srivastava, A., & Lall, R. (Eds.), Nutraceuticals in Veterinary Medicine (pp 261-285). Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-04624-8_19

Araújo, L. D. F., Dias, M. V. C., Brito, E. D., & Oliveira, S., Jr. (2009). Enriquecimento proteico de alimentos por levedura em fermentação semissólida: alternativa na alimentação animal. Revista Tecnologia & Ciência Agropecuária, 3(3), 47-53.

Association Official Analytical Chemists (2016). Official methods of analysis (20nd ed.). AOAC.

Bach, A., Guasch, I., Elcoso, G., Chaucheyras-Durand, F., Castex, M., Fàbregas, F. E., Garcia-Fruitos, E., & Aris, A. (2018). Changes in gene expression in the rumen and colon epithelia during the dry period through lactation of dairy cows and effects of live yeast supplementation. Journal of Dairy Science, 101(3), 2631-2640. doi: 10.3168/jds.2017-13212 DOI: https://doi.org/10.3168/jds.2017-13212

Bach, A., López-García, A., González-Recio, O., Elcoso, G., Fàbregas, F., Chaucheyras-Durand, F., & Castex, M. (2019). Changes in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cows. Journal of Dairy Science, 102(7), 6180-6198. doi: 10.3168/jds.2018-16105 DOI: https://doi.org/10.3168/jds.2018-16105

Blaxter, K. L., & Clapperton, J. L. (1965). Prediction of the amount of methane produced by ruminants. British Journal of Nutrition, 19(1-2), 511-522. doi: 10.1079/BJN19650046 DOI: https://doi.org/10.1079/BJN19650046

Chaucheyras-Durand, F., Walker, N. D., & Bach, A. (2008). Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Animal Feed Science and Technology, 145(1-4), 5-26. doi: 10.1016/j.anifeedsci.2007.04.019 DOI: https://doi.org/10.1016/j.anifeedsci.2007.04.019

Detmann, E., Souza, M. A., & Valadares, S. C., Fº. (2012). Métodos para análise de alimentos. Suprema.

Elghandour, M. M. Y., Tan, Z. L., Abu Hafsa, S. H., Adegbeye, M. J., Greiner, R., Ugbogu, E. A., Monroy, C., & Salem, A. Z. M. (2019). Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo‐ruminant feeding: a review. Journal of Applied Microbiology, 128(3), 658-674. doi: 10.1111/jam.14416 DOI: https://doi.org/10.1111/jam.14416

Fomenky, B. E., Chiquette, J., Bissonnette, N., Talbot, G., Chouinard, P. Y., & Ibeagha-Awemu, E. M. (2017). Impact of Saccharomyces cerevisiae boulardii CNCMI-1079 and Lactobacillus acidophilus BT1386 on total lactobacilli population in the gastrointestinal tract and colon histomorphology of Holstein dairy calves. Animal Feed Science and Technology, 234, 151-161. doi: 10.1016/j.anifeedsci.2017.08.019 DOI: https://doi.org/10.1016/j.anifeedsci.2017.08.019

Fonty, G., & Chaucheyras-Durand, F. (2006). Effects and modes of action of live yeasts in the rumen. Biologia, 61(6), 741-750. doi: 10.2478/s11756-006-0151-4 DOI: https://doi.org/10.2478/s11756-006-0151-4

Fuller, R. (1992). The effect of probiotics on the gut micro-ecology of farm animals. In Wood, B. J. B. (Ed.), The Lactic Acid Bacteria Vol. 1 (pp.171-192). Springer, Boston, MA. DOI: https://doi.org/10.1007/978-1-4615-3522-5_7

Garcia-Diaz, T., Ferriani-Branco, A., Jacovaci, F. A., Cabreira-Jobim, C., Bolson, D. C., & Pratti-Daniel, J. L. (2018). Inclusion of live yeast and mannan-oligosaccharides in high grain-based diets for sheep: ruminal parameters, inflammatory response and rumen morphology. PLoS One, 13(2), e0193313. doi: 10.1371/journal.pone.0193313 DOI: https://doi.org/10.1371/journal.pone.0193313

Gibson, G. R., Hutkins, R. W., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews: Gastroenterology & Hepatology, 14(8), 491-502. doi: 10.1038/nrgastro.2017.75 DOI: https://doi.org/10.1038/nrgastro.2017.75

Hall, M. B. (2000). Calculation of non-structural carbohydrate content of feeds that contain non-protein nitrogen. (Bulletin, 339). University of Florida.

Hristov, A. N., Varga, G., Cassidy, T., Long, M., Heyler, K., Karnati, S. A., Corl, B., Hovde, C. J., & Yoon, I. (2010). Effect of Saccharomyces cerevisiae fermentation product on ruminal fermentation and nutrient utilization in dairy cows. Journal of Dairy Science, 93(2), 682-692. doi: 10.3168/jds.2009-2379 DOI: https://doi.org/10.3168/jds.2009-2379

Levene, H. (1960). Robust tests for equality of variances. In I. Olkin (Ed.), Contributions to probability and statistics; essays in honor of harold hotelling (pp. 278-292). Redwood City, CA.

Li, J., Li, D. F., Xing, J. J., Cheng, Z. B., & Lai, C. H. (2006). Effects of b-glucan extracted from Saccharomyces cerevisiae on growth performance and immunological and somatotropic responses of pigs challenged with Escherichia coli lipopolysaccharide. Journal of Animal Science, 84(9), 2374-2381. doi: 10.2527/jas.2004-541 DOI: https://doi.org/10.2527/jas.2004-541

Licitra, G., Hernandez, T. M., & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57(4), 347-358. doi: 10.1016/0377-8401(95)00837-3 DOI: https://doi.org/10.1016/0377-8401(95)00837-3

Malekkhahi, M., Tahmasbi, A. M., Naserian, A. A., Danesh-Mesgaran, M., Kleen, J. L., Alzahal, O., & Ghaffari, M. H. (2016). Effects of supplementation of active dried yeast and malate during sub-acute ruminal acidosis on rumen fermentation, microbial population, selected blood metabolites, and milk production in dairy cows. Animal Feed Science and Technology, 213, 29-43. doi: 10.1016/j.anifeedsci.2015.12.018 DOI: https://doi.org/10.1016/j.anifeedsci.2015.12.018

Martin, A. K., & Blaxter, K. L. (1965). The energy cost of urea synthesis in sheep. In K. L. Blaxter (Ed.). Energy metabolism (pp. 83-91). London.

Maynard, L. A., Loosli, J. K., Hintz, H. F., & Warner, R. G. (1984). Nutrição animal (3a ed.). Freitas Bastos S.A.

National Research Council (2007). Nutrient requirements of small ruminants. National Academy Press.

Ogunade, I. M., Lay, J., Andries, K., McManus, C. J., & Bebe, F. (2019). Effects of live yeast on differential genetic and functional attributes of rumen microbiota in beef cattle. Journal of Animal Science and Biotechnology, 10(1), 1-7. doi: 10.1186/s40104-019-0378-x DOI: https://doi.org/10.1186/s40104-019-0378-x

Rodrigues, G. R. D., Schultz, E. B., Siqueira, M. T. S., Fonseca, A. L., Oliveira, M. R., Silva, D. A. P., & Macedo, G. L., Jr. (2021). Use of active and inactive yeasts in lamb diets: intake, digestibility, and metabolism. Veterinária Notícias, 27(2), 19-43. DOI: https://doi.org/10.14393/VTN-v27n2-2021-58884

Sales, J. (2011). Effects of Saccharomyces cerevisiae supplementation on ruminal parameters, nutrient digestibility and growth in sheep: A meta-analysis. Small Ruminant Research, 100(1), 19-29. doi: 10.1016/j.smallrumres.2011.05.012 DOI: https://doi.org/10.1016/j.smallrumres.2011.05.012

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality. Biometrika, 52(3/4), 591-609. doi: 10.1093/biomet/52.3-4.591 DOI: https://doi.org/10.2307/2333709

Silva, D. J., & Queiroz, A. C. (2002). Análise de alimentos (métodos químicos e biológicos) (2a ed.). UFV. Imp. Univ.

Silva, J. F. C., & Leão, M. I. (1979). Fundamentos de nutrição de ruminantes. Livroceres.

Siqueira, M. T. S., Ruela, P. A. C., Oliveira, K. A., Paula Silva, D. A. de, Sousa, L. F., & Macedo, G. D. L., Jr. (2020). Avaliação dos parâmetros nutricionais e metabólicos de borregas alimentadas com leveduras na ração. Caderno de Ciências Agrárias, 12, 1-10. doi: 10.35699/2447-6218.2020.23902 DOI: https://doi.org/10.35699/2447-6218.2020.23902

Sniffen, C. J., O'Connor, J. D., Van Soest, P. J., Fox, D. G., & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, 70(11), 3562-3577. doi: 10.2527/1992.70113562x DOI: https://doi.org/10.2527/1992.70113562x

Song, B., Wu, T., You, P., Wang, H., Burke, J. L., Kang, K., Yu, W., Wang, M., Li, B., He1, Y., Huo, Q., Li, C., Tian, W., Li, R., Li, J., Wang, C., & Sun, X. (2021). Dietary supplementation of yeast culture into pelleted total mixed rations improves the growth performance of fattening lambs. Frontiers in Veterinary Science, 8, 657816. doi: 10.3389/fvets.2021.657816 DOI: https://doi.org/10.3389/fvets.2021.657816

Street, J. C., & Butcher, J. E., & Harris L. E. (1964). Estimating urine energy from urine nitrogen. Journal of Animal Science, 23(4), 1039-1041. doi: 10.2527/jas1964.2341039x DOI: https://doi.org/10.2527/jas1964.2341039x

Van Soest, P. J. (1994). Nutritional ecology of the ruminant (2nd ed.). Cornell University Press. DOI: https://doi.org/10.7591/9781501732355

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods of dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Animal Science, 74(10), 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2 DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Williams, P. E. V., & Newbold, C. J. (1996). Rumen probiosis: the effects of novel microorganisms on rumen fermentation and ruminant productivity. In P. C. Garnsworthy, & D. J. A. Cole (Eds.), Recent developments in ruminant nutrition 3. (pp. 351-367). Sevenoaks.

Zapata, O., Cervantes, A., Barreras, A., Monge-Navarro, F., González-Vizcarra, V. M., Estrada-Angulo, A., Urías-Estrada, J. D., Corona, L., Zinn, R. A., Martínez-Alvarez, I. G., & Plascencia, A. (2021). Effects of single or combined supplementation of probiotics and prebiotics on ruminal fermentation, ruminal bacteria, and total tract digestion in lambs. Small Ruminant Research, 204, 106538. doi: 10.1016/j.smallrumres.2021.106538 DOI: https://doi.org/10.1016/j.smallrumres.2021.106538

Zeoula, L. M., Fereli, F., Prado, I. N., Geron, L. J. V., Caldas, S. F. Neto, Prado, O. P. P. P., & Maeda, E. M. (2006). Digestibilidade e balanço de nitrogênio de rações com diferentes teores de proteína degradável no rúmen e milho moído como fonte de amido em ovinos. Revista Brasileira de Zootecnia, 35(5), 2179-2186. doi: 10.1590/S1516-35982006000700039 DOI: https://doi.org/10.1590/S1516-35982006000700039

Downloads

Publicado

2024-12-16

Como Citar

Feitosa, T. R. M., Sousa, L. F., Ferreira, D. A., Oliveira, K. A., Schultz, E. B., Oliveira, M. R. de, … Macedo Junior, G. de L. (2024). Combinação de levedura ativa com inativa e seu uso como aditivo para borregas confinadas: parâmetros nutricionais. Semina: Ciências Agrárias, 46(1), 169–182. https://doi.org/10.5433/1679-0359.2025v46n1p169

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 3 4 > >> 

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.