Correlação entre perfil mineral, características físico-químicas e composição centesimal da carne de ovelhas Santa Inês submetidas à restrição hídrica

Autores

DOI:

https://doi.org/10.5433/1679-0359.2023v44n2p529

Palavras-chave:

Cálcio, Componentes principais, Dureza, Ferro, Proteína bruta.

Resumo

O objetivo deste estudo foi avaliar as correlações entre o perfil mineral, as características físico-químicas e a composição centesimal da carne de ovelhas recebendo diferentes níveis de oferta hídrica (100% - grupo ad libitum; 80%; 60% e 40% do grupo ad libitum). Trinta e duas ovelhas Santa Inês foram distribuídas em delineamento em blocos ao acaso, com 4 tratamentos e 8 repetições, durante o período experimental de 63 dias. Correlações significativas entre todos os minerais (P<0,05) foram encontradas nos níveis de 60% e 40% de oferta hídrica. Observou-se correlação (P<0,05) dos minerais P, K, Ca, Mg, S, Cu e Fe com a proteína bruta em 100% de oferta hídrica. Correlações negativas (P<0,05) entre N, P, K, Ca, Mg, S, Cu, Fe e Zn foram detectadas na carne de animais que receberam oferta de 60% de água. A análise de componentes principais (ACP) dos macrominerais explicaram 82,9% da variação dos dados. O zinco apresentou forte contribuição para a componente 1 (CP1). As perdas por cozimento tiveram contribuição semelhante para CP1 e componente 2 (CP2). A CP1 e a CP2 explicaram 66,7% da variação dos dados das características químicas. A diminuição da oferta hídrica promoveu a correlação do nitrogênio com os demais minerais da carne, além de alterar a correlação entre o perfil físico e químico da carne.

Métricas

Carregando Métricas ...

Biografia do Autor

Cleyton de Almeida Araújo, Universidade Federal do Vale do São Francisco

Aluno do Programa de Pós-Graduação em Zootecnia, Universidade Federal do Vale do São Francisco, UNIVASF, Petrolina, PE, Brasil.

André Luiz Rodrigues Magalhães, Universidade Federal do Agreste de Pernambuco

Prof. Dr., Programa de Pós-Graduação em Zootecnia e Pastagens, Universidade Federal do Agreste de
Pernambuco, UFAPE, Garanhuns, PE, Brasil.

Gherman Garcia Leal de Araújo, Empresa Brasileira de Pesquisa Agropecuária

Pesquisador, Empresa Brasileira de Pesquisa Agropecuária, Embrapa Semiárido, EMBRAPA, Petrolina, PE, Brasil.

Fleming Sena Campos, Universidade Federal do Maranhão

Pós-doutorando do Programa de Pós-Graduação em Zootecnia, Universidade Federal do Maranhão, UFMA, Chapadinha, MA, Brasil.

Glayciane Costa Gois, Universidade Federal do Vale do São Francisco

Pesquisadora, Bolsista Fixação de Pesquisador/FACEPE, UNIVASF, Petrolina, PE, Brasil.

Kelly Cristina dos Santos, Universidade Federal Rural de Pernambuco

Pós-Doutorando do Programa de Pós-Graduação em Zootecnia, Universidade Federal Rural de Pernambuco, UFRPE, Recife, PE, Brasil.

Maria Helena Tavares de Matos, Universidade Federal do Vale do São Francisco

Profa Dra, Programa de Pós-Graduação em Ciências Veterinárias do Semiárido, Universidade Federal do Vale do São Francisco, UNIVASF, Petrolina, PE, Brasil.

Daniel Bezerra do Nascimento, Universidade Federal Rural de Pernambuco

Aluno do Programa de Pós-Graduação em Zootecnia, Universidade Federal Rural de Pernambuco, UFRPE, Recife, PE, Brasil.

Neilson Silva Santos, Universidade Federal do Vale do São Francisco

Aluno do Programa de Pós-Graduação em Zootecnia, Universidade Federal do Vale do São Francisco, UNIVASF, Petrolina, PE, Brasil.

Referências

American Oil Chemists Society (1995). Official methods and recommended practices of AOCS (3nd ed.). American Oil Chemists’ Society.

American Oil Chemists Society (2017). Official methods and recommended practices of AOCS (7nd ed.). American Oil Chemists’ Society.

Arabi, O. H., Elmawlla, S. F., Abdelhai, E., & Moneim, A. (2014). Macro minerals profiles in camel’s meat. International Journal of Current Research and Review, 6(5), 19-24. doi: 10.31782/2231-2196

Araújo, C. A., Araújo, G. G. L., Magalhães, A. L. R., Gois, G. C., Matos, M. H. T., Lima, D. O., Rodrigues, R. T. S., Quadros, C. P., Wagner, R., Vendruscolo, R. G., & Campos, F. S. (2022). Meat quality in ewes submitted to reduction in water supply. Small Ruminant Research, 216(1), e106801. doi: 10.1016/j.smallrumres.2022.106801 DOI: https://doi.org/10.1016/j.smallrumres.2022.106801

Association of Official Analytical Chemists (2016). Official methods of analysis of AOAC International (20nd ed.). George W. Latimer Jr.

Baaij, J. H. F., Hoenderop, J. G. J., & Bindels, R. J. M. (2015). Magnesium in man: implications for health and disease. Physiological Reviews, 95(1), 1-46. doi: 10.1152/physrev.00012.2014 DOI: https://doi.org/10.1152/physrev.00012.2014

Bagur, R., Souza, A., Günther, G., Reif, R., Várnai, P., Csordás, G., & Hajnóczky, G. (2018). Arsenic targets local ROS and calcium homeostasis at the mitochondria-ER interface. Biophysical Journal, 114(3), e659. doi: 10.1016/j.bpj.2017.11.3559 DOI: https://doi.org/10.1016/j.bpj.2017.11.3559

Bourne, M. C. (2002). Food texture and viscosity: concept and measurement (2nd ed.). Academic Press. DOI: https://doi.org/10.1016/B978-012119062-0/50007-3

Carvalho, Z. G., Vieira, F., Araújo, A. R., Alves, D. D., Oliveira, L. L. S., Reis, S. T., & Silva, V. L. (2015). Cortes cárneos e constituintes não-carcaça de ovelhas terminadas em pasto com teores diferentes de suplementação. Semina: Ciências Agrárias, 36(1), 409-419. doi: 10.5433/1679-0359.2015v36n1p409 DOI: https://doi.org/10.5433/1679-0359.2015v36n1p409

Chedid, M., Jaber, L. S., Giger-Reverdin, S., Duvaux-Ponter, C., & Hamadeh, S. K. (2014). Water stress in sheep raised under arid conditions. Canadian Journal of Animal Science, 94(2), 243-257. doi: 10.4141/cjas2013-188 DOI: https://doi.org/10.4141/cjas2013-188

Du, M., Li, X., Li, Z., Li, M., Gao, L., & Zhang, D. (2017). Phosphorylation inhibits the activity of μ-calpain at different incubation temperatures and Ca2+ concentrations in vitro. Food Chemistry, 228(1), 649-655. doi: 10.1016/j.foodchem.2017.02.003 DOI: https://doi.org/10.1016/j.foodchem.2017.02.003

Duan, Q., Tait, R. G., Jr., Schneider, M. J., Beitz, D. C., Wheeler, T. L., Shackelford, S. D., & Reecy, J. M. (2015). Sire breed effect on beef longissimus mineral concentrations and their relationships with carcass and palatability traits. Meat Science, 106(1), 25-30. doi: 10.1016/j.meatsci.2015.03.020 DOI: https://doi.org/10.1016/j.meatsci.2015.03.020

García-Arias, M. T., Pontes, E. Á., García-Linares, M. C., García-Fernandez, M. C., & Sanchez-Muniz, F. J. (2003). Cooking-freezing-reheating (CFR) of sardine (Sardina pilchardus) fillets: effect of different cooking and reheating procedures on the proximate and fatty acid compositions. Food Chemistry, 83(3), 349-356. doi: 10.1016/S0308-8146(03)00095-5 DOI: https://doi.org/10.1016/S0308-8146(03)00095-5

Gifford, J. L., Walsh, M. P., & Vogel, H. J. (2007). Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochemistry Journal, 405(2), 199-221. doi: 10.1042/BJ20070255 DOI: https://doi.org/10.1042/BJ20070255

Guo, D., Du, Y., Wu, Q., Jiang, W., & Bi, H. (2014). Disrupted calcium homeostasis is involved in elevated zinc ion-induced photoreceptor cell death. Archives of Biochemistry and Biophysics, 560(1), 44-51. doi: 10.1016/j.abb.2014.07.014. DOI: https://doi.org/10.1016/j.abb.2014.07.014

Gussarsson, M., & Jensen, P. (1992). Effects of copper and cadmium on uptake and leakage of K+ in birch (Betula pendula) roots. Tree Physiology, 11(3), 305-313. doi: 10.1093/treephys/11.3.305 DOI: https://doi.org/10.1093/treephys/11.3.305

Harris, D. C. (1991). Quantitative chemical analysis. WH. Freeman.

Hill, G. M., & Shannon, M. C. (2019). Copper and zinc nutritional issues for agricultural animal production. Biological Trace Element Research, 188(1), 148-159. doi: 10.1007/s12011-018-1578-5 DOI: https://doi.org/10.1007/s12011-018-1578-5

Honikel, K. O., & Hamm, R. (1994). Measurement of water holding capacity and juiceness. In A. M. Pearson, & T. R. Dutson (Eds.), Quality attributes and their measurement in meat, poultry and fish products (pp. 125-161). New York, USA: Blackie Academic & Professional. https://link.springer.com/content/pdf/10.1007/978-1-4615-2167-9.pdf DOI: https://doi.org/10.1007/978-1-4615-2167-9_5

Hoskote, S. S., Joshi, S. R., & Ghos, A. K. (2008). Disorders of potassium homeostasis: pathophysiology and management. The Journal of the Association of Physicians of India, 56(1), 685-693. https://pubmed.ncbi.nlm.nih.gov/19086355/

Huidobro, F. R., Miguel, E., Blázquez, B., & Onega, E. (2005). A comparison between two methods (Warner-Bratzler and texture profile analysis) for testing either raw meat or cooked meat. Meat Science, 69(3), 527-536. doi: 10.1016/j.meatsci.2004.09.008 DOI: https://doi.org/10.1016/j.meatsci.2004.09.008

Ibidhi, R., & Ben Salem, H. (2018). Water footprint and economic water productivity of sheep meat at farm scale in humid and semi-arid agro-ecological zones. Small Ruminant Research, 166(1), 101-108. doi: 10.1016/j.smallrumres.2018.06.003 DOI: https://doi.org/10.1016/j.smallrumres.2018.06.003

Irschik, I., Bauer, F., Sager, M., & Paulsen, P. (2013). Copper residues in meat from wild artiodactyls hunted with two types of rifle bullets manufactured from copper. European Journal of Wildlife Research, 59(1), 129-136. doi: 10.1007/s10344-012-0656-9 DOI: https://doi.org/10.1007/s10344-012-0656-9

Jacob, R. H., & Pethick, D. W. (2014). Animal factors affecting the meat quality of Australian lamb meat. Meat Science, 96(2), 1120-1123. doi: 10.1016/j.meatsci.2013.10.039 DOI: https://doi.org/10.1016/j.meatsci.2013.10.039

Jiang, S., Liu, Y., Shen, Z., Zhou, B., & Shen, Q. W. (2019). Acetylome profiling reveals extensive involvement of lysine acetylation in the conversion of muscle to meat. Journal of Proteomics, 205(1), e103412. doi: 10.1016/j.jprot.2019.103412 DOI: https://doi.org/10.1016/j.jprot.2019.103412

Khan, A. A., Randhawa, M. A., Carne, A., Ahmed, I. A. M., Barr, D., Reid, M., & Bekhit, A. E. D. A. (2017). Effect of low and high pulsed electric field on the quality and nutritional minerals in cold boned beef M. longissimus et lumborum. Innovative Food Science & Emerging Technologies, 41(1), 135-143. doi: 10.1016/j.ifset.2017.03.002 DOI: https://doi.org/10.1016/j.ifset.2017.03.002

Knight, M. I., Butler, K. L., Linden, N. P., Burnett, V. F., Ball, A. J., McDonagh, M. B., & Behrendt, R. (2020). Understanding the impact of sire lean meat yield breeding value on carcass composition, meat quality, nutrient and mineral content of Australian lamb. Meat Science, 170(1), e108236. 10.1016/j.meatsci.2020.108236 DOI: https://doi.org/10.1016/j.meatsci.2020.108236

Knight, M. I., Daetwyler, H. D., Hayes, B. J., Hayden, M. J., Ball, A. J., Pethick, D. W., & McDonagh, M. B. (2014). An independent validation association study of carcass quality, shear force, intramuscular fat percentage and omega-3 polyunsaturated fatty acid content with gene markers in Australian lamb. Meat Science, 96(2), 1025-1033. doi: 10.1016/j.meatsci.2013.07.008 DOI: https://doi.org/10.1016/j.meatsci.2013.07.008

Lawrie, R. A. (2017). Lawrie's meat science (7nd ed.). Elsevier: Woodhead Publishing Series in Food Science, Technology and Nutrition Book. https://www.sciencedirect.com/book/9780081006948/lawries-meat-science

Liang, L. P., Jarrett, S. G., & Patel, M. (2008). Chelation of mitochondrial iron prevents seizure-induced mitochondrial dysfunction and neuronal injury. Journal of Neuroscience, 28(45), 11550-11556. doi: 10.1523/JNEUROSCI.3016-08.2008 DOI: https://doi.org/10.1523/JNEUROSCI.3016-08.2008

Mortimer, S. I., Fogarty, N. M., Van Der Werf, J. H. J., Brown, D. J., Swan, A. A., Jacob, R. H., & Pethick, D. W. (2018). Genetic correlations between meat quality traits and growth and carcass traits in Merino sheep. Journal of Animal Science, 96(9), 3582-3598. doi: 10.1093/jas/sky232 DOI: https://doi.org/10.1093/jas/sky232

National Research Council (2007). Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. National Academic Press.

Piñero, M. P., Parra, K., Huerta-Leidenz, N., Moreno, L. A., Ferrer, M., Araujo, S., & Barboza, Y. (2008). Effect of oat’s soluble fibre (beta-glucan) as a fat replacer on physical, chemical, microbiological and sensory properties of low-fat beef patties. Meat Science, 80(3), 675-680. doi: 10.1016/j.meatsci.2008.03.006 DOI: https://doi.org/10.1016/j.meatsci.2008.03.006

Ran, Y., Lannerstad, M., Herrero, M., Van Middelaar, C. E., & Boer, I. J. M. (2016). Assessing water resource use in livestock production: a review of methods. Livestock Science, 187(1), 68-79. doi: 10.1016/j.livsci.2016.02.012 DOI: https://doi.org/10.1016/j.livsci.2016.02.012

Ribeiro, J. S., Moreno, G. M. B., Vieira, M. S. B., Silva, M. J. M. S., Lima, C. B., Mariz, T. M. A., Santos, L. L., & Lima, D. M., Jr. (2020). Replacement of corn silage with spineless cactus in sheep diet: carcass and meat sensory characteristics. Acta Scientiarum. Animal Science, 42(1), e48832. doi: 10.4025/actascianimsci.v42i1.48832 DOI: https://doi.org/10.4025/actascianimsci.v42i1.48832

Romani, A. M. P. (2011). Cellular magnesium homeostasis. Archives of Biochemistry and Biophysics, 512(1), 1-23. doi: 10.1016/j.abb.2011.05.010 DOI: https://doi.org/10.1016/j.abb.2011.05.010

Rosa, F. C., Bressan, M. C., Bertechini, A. G., Fassani, É. J., Vieira, J. O., Faria, P. B., & Savian, T. V. (2006). Efeito de métodos de cocção sobre a composição química e colesterol em peito e coxa de frangos de corte. Revista Ciência & Agrotecnologia, 30(4), 707-714. doi: 10.1590/S1413-70542006000400017 DOI: https://doi.org/10.1590/S1413-70542006000400017

RStudio (2020). Uma linguagem e ambiente para computação estatística. R Foundation for Statistical Computing.

Santos, F. M., Araújo, G. G. L., Souza, L. L., Yamamoto, S. M., Queiroz, M. A. Á., Lanna, D. P. D., & Moraes, S. A. (2019). Impact of water restriction periods on carcass traits and meat quality of feedlot lambs in the Brazilian semi-arid region. Meat Science, 156(1), 196-204. doi: 10.1016/j.meatsci.2019.05.033 DOI: https://doi.org/10.1016/j.meatsci.2019.05.033

Statistical Analysis System (2015). Sas/Stat University User Guide. Sas Institute Inc.

Stipanuk, M. H., & Caudill, M. A. (2018). Biochemical, physiological, and molecular aspects of human nutrition (4nd ed.). Saunders. (E-Book).

Tercini, J. R. B., Perez, R. F., Schardong, A., & Bonnecarrère, J. I. G. (2021). Potential impact of climate change analysis on the management of water resources under stressed quantity and quality scenarios. Water, 13(21), e2984. doi: 10.3390/w13212984. DOI: https://doi.org/10.3390/w13212984

Underwood, E. J., & Suttle, N. F. (1990). The mineral nutrition of livestock (3nd ed.). CABI Publishing.

Van Laack, R. L. J. M., Liu, C. H., Smith, M. O., & Loveday, H. D. (2000). Characteristics of pale, soft, exudative broiler breast meat. Poultry Science, 79(7), 1057-1061. doi: 10.1093/ps/79.7.1057 DOI: https://doi.org/10.1093/ps/79.7.1057

Wang, L. L., Han, L., Ma, X. L., Yu, Q. L., & Zhao, S. N. (2017). Effect of mitochondrial apoptotic activation through the mitochondrial membrane permeability transition pore on yak meat tenderness during postmortem aging. Food Chemistry, 234(1), 323-331. doi: 10.1016/j.foodchem.2017.04.185 DOI: https://doi.org/10.1016/j.foodchem.2017.04.185

Wu, T., Wang, S., Su, B., Wu, H., & Wang, G. (2021). Understanding the water quality change of the Yilong Lake based on comprehensive assessment methods. Ecological Indicators, 126(1), e107714. doi: 10.1016/j.ecolind.2021.107714 DOI: https://doi.org/10.1016/j.ecolind.2021.107714

Zambrzycka, E., & Godlewska-Żyłkiewicz, B. (2014). Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 101(1), 234-239. doi: 10.1016/j.sab.2014.08.041 DOI: https://doi.org/10.1016/j.sab.2014.08.041

Zhang, L., Wang, H., Zhou, X., Mao, L., Ding, K., & Hu, Z. (2019a). Role of mitochondrial calcium uniporter‐mediated Ca2+ and iron accumulation in traumatic brain injury. Journal of Cellular and Molecular Medicine, 23(4), 2995-3009. doi: 10.1111/jcmm.14206 DOI: https://doi.org/10.1111/jcmm.14206

Zhang, X., Han, L., Hou, S., Raza, S. H. A., Wang, Z., Yang, B., & Al Hazani, T. M. I. (2022). Effects of different feeding regimes on muscle metabolism and its association with meat quality of Tibetan sheep. Food Chemistry, 374(1), e131611. doi: 10.1016/j.foodchem.2021.131611 DOI: https://doi.org/10.1016/j.foodchem.2021.131611

Zhang, Y., & Ertbjerg, P. (2019b). On the origin of thaw loss: relationship between freezing rate and protein denaturation. Food Chemistry, 299(1), e125104. doi: 10.1016/j.foodchem.2019.125104 DOI: https://doi.org/10.1016/j.foodchem.2019.125104

Downloads

Publicado

2023-04-25

Como Citar

Araújo, C. de A., Magalhães, A. L. R., Araújo, G. G. L. de, Campos, F. S., Gois, G. C., Santos, K. C. dos, Matos, M. H. T. de, Nascimento, D. B. do, & Santos, N. S. (2023). Correlação entre perfil mineral, características físico-químicas e composição centesimal da carne de ovelhas Santa Inês submetidas à restrição hídrica. Semina: Ciências Agrárias, 44(2), 529–548. https://doi.org/10.5433/1679-0359.2023v44n2p529

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)