Technological-functional features of chia, almond, pumpkin seed, soybean and pea proteins
DOI:
https://doi.org/10.5433/1679-0359.2025v46n3p675Keywords:
Functional properties, Plant based, Plant protein solubility, Plant protein isolates and concentrates.Abstract
Plant proteins are gaining prominence in plant-based product development. Plant protein isolates and concentrates work as stabilizing, gelling and dispersing agents. Pea (86% protein), pumpkin seed (60% protein), almond (57.5% protein), chia (42% protein) and soybean (43% protein) protein technological-functional properties were determined. Samples were assessed based on the methodology proposed by the Brazilian Agricultural and Research Corporation to find emulsifying activity (EAI) and emulsion stability indices (ESI), foaming capacity (FC) and stability (FS), water solubility, gelling capacity, water holding capacity (WHC) and oil holding capacity (OHC). Peas recorded the highest FC (94.07 ± 6.87 %) and EAI (312.96 ± 14.32 ) (p<0.05) values. Soybean and chia accounted for the highest ESI (291.02 ± 15.68 min; 269.58 ± 19.84 min) and pumpkin seed recorded the lowest FS (82 ± 0.51 %) (p>0.05) values. Chia and pea proteins showed higher WHC (4.60 ± 0.26 g/g sample; 4.56 ± 0.01 g/g sample) value, whereas soybean and pea proteins presented higher OHC (2.58 ± 0.25 g/g sample; 2.43 ± 0.26 g/g sample) (p < 0.05) value. Almond protein recorded better gel formation at 0.06 g/mL, whereas soybean protein did not form gel at any of the tested concentrations. The five proteins were less soluble at pH ranging from 4 to 6 and they were more soluble at pH > 6. Pea protein showed the highest technological potential to develop new products among the assessed proteins, and this finding is likely related to its protein content, origin, extraction method and globulins found in it.
Downloads
Metrics
References
Albano, K. M., Cavallieri, Â. L. F., & Nicoletti, V. R. (2018). Electrostatic interaction between proteins and polysaccharides: physicochemical aspects and applications in emulsion stabilization. Food Reviews International, 35(1), 54-89. doi: 10.1080/87559129.2018.1467442 DOI: https://doi.org/10.1080/87559129.2018.1467442
Aydemir, L. Y., & Yemenicioglu, A. (2013). Potential of Turkish Kabuli type chickpea and green and red lentil cultivars as source of soy and animal origin functional protein alternatives. LWT - Food Science and Technology, 50(2), 686-694. doi: 10.1016/j.lwt.2012.07.023 DOI: https://doi.org/10.1016/j.lwt.2012.07.023
Boeck, T., Sahin, A. W., Zannini, E., & Arendt, E. K. (2021). Nutritional properties and health aspects of pulses and their use in plant-based yogurt alternatives. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3858-3880. doi: 10.1111/1541-4337.12778 DOI: https://doi.org/10.1111/1541-4337.12778
Boye, J. I. Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., & Rajamohamed, S. H. (2010). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International, 43(2), 537-546. doi: 10.1016/j.foodres.2009.07.021 DOI: https://doi.org/10.1016/j.foodres.2009.07.021
Chang, L., Lan, Y., Bandillo, N., Ohm, J.-B., Chen, B., & Rao, J. (2022). Plant proteins from green pea and chickpea: extraction, fractionation, structural characterization and functional properties. Food Hydrocoll, 123(2), 107165. doi: 10.1016/j.foodhyd.2021.107165 DOI: https://doi.org/10.1016/j.foodhyd.2021.107165
Chen, C. Y., Lapsley, K., & Blumberg, J. (2006). A nutricion and health perspective on almonds. Journal of the Science of Food and Agriculture, 86(14), 2245-2250. doi: 10.1002/jsfa.2659 DOI: https://doi.org/10.1002/jsfa.2659
Daba, D. S., & Morris, F. C. (2021). Pea proteins: variation, composition, genetics, and functional properties. Cereal Chemistry, 99(1), 8-20. doi: 10.1002/cche.10439 DOI: https://doi.org/10.1002/cche.10439
Day, L., Cakebread, J. A., & Loveday, S. M. (2022). Food proteins from animals and plants: differences in the nutritional and functional properties. Trends in Food Science & Technology, 119(1), 428-442. doi: 10. 1016/j.tifs.2021.12.020 DOI: https://doi.org/10.1016/j.tifs.2021.12.020
Empresa Brasileira de Pesquisa Agropecuária (2022). Guide for technological-functional characterization of protein ingredients for the plant-based market. EMBRAPA Agroindústria de Alimentos.
Fernández-Quintela, A., Macarulla, M. T., Del Barrio, A. S., & Martínez, J. A. (1997). Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain. Plant Foods for Human Nutrition, 51(4), 331-341. doi: 10.1023/A:1007936930354 DOI: https://doi.org/10.1023/A:1007936930354
Guyomarc'h, F., Arvisenet, G., Bouhallab, S., Canon, F., Deutsch, S. M., Drigon, V., Dupont, D., Famelart, M. H., Garric, G., Guédon, E., Guyot, T., Hiolle, M., Jan, G., Loir, Y. L., Lechevalier, V., Nau, F., Pezennec, S., Thierry, A., Valence, F., & Gagnaire, V. (2021). Mixing milk, egg and plant resources to obtain safe and tasty foods with environmental and health benefits. Trends in Food Science & Technology, 108(2), 119-132. doi: 10.1016/j.tifs.2020.12.010 DOI: https://doi.org/10.1016/j.tifs.2020.12.010
Kalita, S., Khandelwal, S., Madan, J., Pandya, H., Sesikeran, B., & Krishnaswamy, K. (2018). Almonds and cardiovascular health: a review, Nutrients, 10(4), 468-478. doi: 10.3390/nu10040468 DOI: https://doi.org/10.3390/nu10040468
Kaur, M., & Singh, N. (2005). Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chemistry, 9(3), 403-411. doi: 10.1016/j.foodchem.2004. 06.015 DOI: https://doi.org/10.1016/j.foodchem.2004.06.015
Kotecka-Majchrzak, K., Sumara, A., Fornal, E., & Montowska, M. (2020). Oilseed proteins - properties and application as a food ingrediente. Trends in Food Science & Technology, 106(12), 160-170. doi: 10.1016/ j.tifs.2020.10.004 DOI: https://doi.org/10.1016/j.tifs.2020.10.004
Kumar, M., Tomar, M., Potkule, J., Reetu, Punia, S., Dhakane-Lad, J., Singh, S., Dhumal, S., Pradhan, P. C., Bhushan, B., Anitha, T., Alajil, O., Alhariri, A., Amarowicz, R., & Kennedy, J. F. (2022). Functional characterization of plant-based protein to determine its quality for food application. Food Hydrocoll, 123(2), 106986. doi: 10.1016/j.foodhyd.2021.106986 DOI: https://doi.org/10.1016/j.foodhyd.2021.106986
Lam, A. C. Y., Karaca, A. C., Tyler, T. R., & Nickerson, M. T. (2018). Pea protein isolates: structure, extraction, and functionality. Food Reviews International, 34(2), 126-147. doi: 10.1080/87559129.2016. 1242135 DOI: https://doi.org/10.1080/87559129.2016.1242135
Le, X. T., Rioux, L.-E., & Turgeon, S. L. (2017). Formation and functional properties of protein–polysaccharide electrostatic hydrogels incomparison to protein or polysaccharide hydrogels. Advances in Colloid and Interface Science, 239(1), 127-135. doi: 10.1016/j.cis.2016.04.006 DOI: https://doi.org/10.1016/j.cis.2016.04.006
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. doi: 10.1016/s0021-9258(19)52451-6 DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
Ma, K. K., Greis, M., Lu, J., Nolden, A. A., McClements, D. J., & Kinchla, A. J. (2022). Functional performanca of plant proteins. Foods, 11(4), 594-617. doi: 10.3390/foods11040594 DOI: https://doi.org/10.3390/foods11040594
Malomo, S. A., & He, R. (2014). Aluko, structural and functional properties of hemp seed protein products. Journal of Food Science, 79(8), 1512-1521. doi: 10.1111/1750-3841.12537 DOI: https://doi.org/10.1111/1750-3841.12537
Marcinek, K., & Krejpcio, Z. (2017). Chia seeds (Salvia hispanica): health promoting properties and therapeutic application - a review. Roczniki Państwowego Zakładu Higieny, 68(2), 123-129. PMID: 28646829.
Miranda, C. G., Speranza, P., Kurozawa, L. E., & Sato, A. C. K. (2022). Lentil protein: impact of diferente extraction methods on structural and functional properties. Heliyon, 8(11), 11775. doi: 10.1016/j.heliyon. 2022.e11775 DOI: https://doi.org/10.1016/j.heliyon.2022.e11775
Nicolai, T., & Chassenieux, C. (2019). Heat-induced gelation of plant globulins. Current Opinion in Food Sciencen, 27(3), 18-22. doi: 10.1016/j.cofs.2019.04.005 DOI: https://doi.org/10.1016/j.cofs.2019.04.005
Satija, A., & Hu, F. B. (2018). Plant-based diets and cardiovascular health. Trends Cardiovascular Medicine, 28(7), 437-441. doi: 10.1016/j.tcm.2018.02.004 DOI: https://doi.org/10.1016/j.tcm.2018.02.004
Shevkani, K., Kaur, A., Kumar, S., & Singh, N. (2015). Cowpea protein isolates: functional properties and application in gluten-free rice muffins. LWT-Food Science and Technology, 63(2), 927-933. doi: 10.1016/ j.lwt.2015.04.058 DOI: https://doi.org/10.1016/j.lwt.2015.04.058
Sim, S. Y. J., Srv, A. Chiang, J. H., & Henry, C. J. (1967). Plant proteins for future foods: a roadmap. Foods, 10(8), 1967-1998. doi: 10.3390/foods10081967 DOI: https://doi.org/10.3390/foods10081967
Stephen, A. M., & Phillips, G. O. (2016). Food polysaccharides and their applications. CRC Press. DOI: https://doi.org/10.1201/9781420015164
Tan, S. T., Tan, S. S., & Tan, C. X. (2023). Soy protein, bioactive peptides, and isoflavones: a review of their safety and health benefits. Pharma Nutrition, 25(3), 100352. doi: 10.1016/j.phanu.2023.100352 DOI: https://doi.org/10.1016/j.phanu.2023.100352
Tang, Q., Ross, Y., & Miao, S. (2023). Plant protein versus dairy proteins: a ph-dependency investigation on their structure and funcional properties. Foods, 12(2), 368-387. doi: 10.3390/foods12020368 DOI: https://doi.org/10.3390/foods12020368
Tang, X., Shen, Y., Zhang, Y., WesSchilling, M., & Li, Y. (2021). Parallel comparison of functional and physicochemical properties of common pulse proteins. LWT – Food Science and Technology, 146(13), 111594. doi: 10.1016/j.lwt.2021.111594 DOI: https://doi.org/10.1016/j.lwt.2021.111594
Vale, C. P., Loquete, F. C. C., Zago, M. G., Chiella, P. V., & Bernardi, D. M. (2019). Composition and properties of pumpkin seed. FAG Journal of Health, 1(4), 79-90. doi: 10.35984/fjh.v1i4.95 DOI: https://doi.org/10.35984/fjh.v1i4.95
Wouters, A. G. B., Rombouts, I., Fierens, E., Brijs, K., & Delcour, J. A. (2016). Relevance of the functional properties of enzymatic plant protein hydrolysates in food systems. Comprehensive Reviews in Food Science and Food Safety, 15(4), 786-800. doi: 10.1111/1541-4337.12209 DOI: https://doi.org/10.1111/1541-4337.12209
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Gabriel Poloto, Carolina Merheb-Dini, Débora Parra Baptista Freitas, Mirna Lúcia Gigante, Paulo Henrique Mariano Marfil

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.
Funding data
-
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Grant numbers Pibic