Interference of sodium alginate and 2,2’-bipyridyl on bacterial growth and biofilm produced by Staphylococcus aureus isolates from bovine mastitis

Authors

DOI:

https://doi.org/10.5433/1679-0359.2025v46n2p367

Keywords:

Siderophore, Iron, Chelators, Gene, Staphyloferrin.

Abstract

S. aureus is considered the main etiologic agent of mastitis, standing out for its ability to produce biofilm, a structure of resistance against antibiotics and the host's immune system. Iron is an essential micronutrient in different biochemical pathways, being associated with the regulation of gene expression and biofilm production. In turn, iron chelators prevent the use of this nutrient by microorganisms, impairing growth. Therefore, the objective of this study was to evaluate the interference of iron chelators (sodium alginate and 2,2'-bipyridyl) on bacterial growth and on the biofilm produced by S. aureus from bovine mastitis. For this purpose, methodologies were developed based on the evaluation of the antimicrobial activity of the compounds, as well as the analysis of the interference with biofilm formation and bacterial growth under different conditions. In addition, an analysis of presence of resistance genes and the icaA, icaD, sbnD and sfaD genes was performed. Although 100% of them had important genes associated with the production of siderophores (sbnD and sfaD), the two chelators were able to interfere with the growth of the isolates. The isolates produced biofilm and had the icaA and icaD genes. Although there was no significant interference with biofilm formation, the two chelators interfered with mature biofilm. 2,2'-bipyridyl, in particular, harms the biofilm formed in 66.66% of isolates. Although the results showed strain-dependent performance, the study showed the potential of sodium alginate and 2,2'-bipyridyl in combating biofilm produced by S. aureus, which is promising in the treatment of mastitis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Ana Caroline Batista Nunes, Universidade Federal do Vale do São Francisco

Doctoral Student in Veterinary Sciences in the Semiarid, Universidade Federal do Vale do São Francisco, UNIVASF, Petrolina, PE, Brazil.

Danillo Sales Rosa, Universidade Federal Rural de Pernambuco

Doctoral Student in Biotechnology, Universidade Federal Rural de Pernambuco, UFRPE, Recife, PE, Brazil.

Naiana Braga Freire, Universidade Federal do Vale do São Francisco

Graduate Natural Resources of Semiarid Department, UNIVASF, Petrolina, PE, Brazil.

Antônio Wilton Cavalcante Fernandes, Universidade de Pernambuco

Dr. in Biotechnology, Universidade de Pernambuco, UFPE, Serra Talhada, PE, Brazil.

Renata de Faria Silva Souza, Universidade Federal do Vale do São Francisco

Dra. in Genetics, UNIVASF, Petrolina, PE, Brazil.

Gisele Veneroni Gouveia, Universidade Federal do Vale do São Francisco

Dra. in Genetics, UNIVASF, Petrolina, PE, Brazil.

Hugo Colombarolli Bonfá, Universidade Federal do Vale do São Francisco

Dr. in Animal Science, UNIVASF, Petrolina, PE, Brazil.

Mateus Matiuzzi da Costa, Universidade Federal do Vale do São Francisco

Dr. in Cell and Molecular Biology, UNIVASF, Petrolina, PE, Brazil.

References

Aldous, W. K., Pounder, J. I., Cloud, J. L., & Woods, G. L. (2005). Comparison of six methods of extracting Mycobacterium tuberculosis DNA from processed sputum for testing by quantitative real-time PCR. Journal of Clinical Microbiology, 43(5), 2471-2473. doi: 10.1128/jcm.43.5.2471-2473.2005 DOI: https://doi.org/10.1128/JCM.43.5.2471-2473.2005

Arciola, C. R., Campoccia, D., Speziale, P., Montanaro, L., & Costerton, J. W. (2012). Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials, 33(26), 5967-5982. doi: 1016/j.biomaterials.2012.05.031 DOI: https://doi.org/10.1016/j.biomaterials.2012.05.031

Aslantaş, Ö., & Demir, C. (2016). Investigation of the antibiotic resistance and biofilm-forming ability of Staphylococcus aureus from subclinical bovine mastitis cases. Journal of Dairy Science, 99(11), 8607-8613. doi: 3168/jds.2016-11310 DOI: https://doi.org/10.3168/jds.2016-11310

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., & Struhl, K. (2003). Current protocols in molecular biology current protocols in molecular biology.

Awad, A., Ramadan, H., Nasr, S., Ateya, A., & Atwa, S. (2017). Genetic characterization, antimicrobial resistance patterns and virulence determinants of staphylococcus aureus isolated form bovine mastitis. Pakistan Journal of Biological Sciences: PJBS, 20(6), 298-305. doi: 3923/pjbs.2017.298.305 DOI: https://doi.org/10.3923/pjbs.2017.298.305

Beasley, F. C., Vinés, E. D., Grigg, J. C., Zheng, Q., Liu, S., Lajoie, G. A., Murphy, M. E. P., & Heinrichs, D. E. (2009). Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus. Molecular Microbiology, 72(4), 947-963. doi: 1111/j.1365-2958.2009.06698.x DOI: https://doi.org/10.1111/j.1365-2958.2009.06698.x

Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2014). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42-51. doi: 1038/nrmicro3380 DOI: https://doi.org/10.1038/nrmicro3380

Chagas, L. G. da Silva, Castro Melo, P. de, Lima, A. M. C., Ramos, G. B., Brito Röder, D. V. D. de, & Nader, A., Fº. (2015). Susceptibilidade e resistência a antimicrobianos de Staphylococcus aureus em condições de biofilme. Brazilian Journal of Veterinary Research and Animal Science, 52(3), 228-233. doi: 11606/ issn.1678-4456.v52i3p228-233 DOI: https://doi.org/10.11606/issn.1678-4456.v52i3p228-233

Cheng, W. N., & Han, S. G. (2020). Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments a review. Asian-Australasian Journal of Animal Sciences, 33(11), 1699. doi: 5713/ajas.20.01 56 DOI: https://doi.org/10.5713/ajas.20.0156

Cho, P., Shi, G. S., & Boost, M. (2015). Inhibitory effects of 2, 2′-dipyridyl and 1, 2, 3, 4, 6-penta-O-galloyl-bD-glucopyranose on biofilm formation in contact lens cases. Investigative Ophthalmology & Visual Science, 56(12), 7053-7057. doi: 1167/iovs.15-17723 DOI: https://doi.org/10.1167/iovs.15-17723

Choby, J. E., Mike, L. A., Mashruwala, A. A., Dutter, B. F., Dunman, P. M., Sulikowski, G. A., Boyd, E. P., & Skaar, E. P. (2016). A small-molecule inhibitor of iron-sulfur cluster assembly uncovers a link between virulence regulation and metabolism in Staphylococcus aureus. Cell Chemical Biology, 23(11), 1351-1361. doi: 1016/j.chembiol.2016.09.012 DOI: https://doi.org/10.1016/j.chembiol.2016.09.012

Clinical and Laboratory Standards Institute (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (11nd ed.). CLSI Standard M07. CLSI.

Clinical and Laboratory Standards Institute (2019). Performance standards for antimicrobial susceptibility testing. CLSI Supplement M100. CLSI.

Goetz, C., Tremblay, Y. D., Lamarche, D., Blondeau, A., Gaudreau, A. M., Labrie, J., Malouin, F., & Jacques, M. (2017). Coagulase-negative staphylococci species affect biofilm formation of other coagulase-negative and coagulase-positive staphylococci. Journal of Dairy Science, 100(8), 6454-6464. doi: 3168/jds.2017-12629 DOI: https://doi.org/10.3168/jds.2017-12629

Gomes, F., Saavedra, M. J., & Henriques, M. (2016). Bovine mastitis disease/pathogenicity: evidence of the potential role of microbial biofilms. FEMS Pathogens and Disease, 74(3), ftw006. doi: 1093/femspd/ftw006 DOI: https://doi.org/10.1093/femspd/ftw006

Horniblow, R. D., Dowle, M., Iqbal, T. H., Latunde-Dada, G. O., Palmer, R. E., Pikramenou, Z., & Tselepis, C. (2015). Alginate-iron speciation and its effect on in vitro cellular iron metabolism. PLoS One, 10(9), e0138240. doi: 1371/journal.pone.0138240 DOI: https://doi.org/10.1371/journal.pone.0138240

Johnson, S. A., Goddard, P. A., Iliffe, C., Timmins, B., Rickard, A. H., Robson, G., & Handley, P. S. (2002). Comparative susceptibility of resident and transient hand bacteria to para‐chloro‐meta‐xylenol and triclosan. Journal of Applied Microbiology, 93(2), 336-344. doi: 1046/j.1365-2672.2002.01691.x DOI: https://doi.org/10.1046/j.1365-2672.2002.01691.x

Kateete, D. P., Kimani, C. N., Katabazi, F. A., Okeng, A., Okee, M. S., Nanteza, A., Joloba, M. L., & Najjuka, F. C. (2010). Identification of Staphylococcus aureus: DNase and Mannitol salt agar improve the efficiency of the tube coagulase test. Annals of Clinical Microbiology and Antimicrobials, 9(23), 1-7. doi: 1186/1476-0711-9-23 DOI: https://doi.org/10.1186/1476-0711-9-23

Kobylarz, M. J., Grigg, J. C., Liu, Y., Lee, M. S., Heinrichs, D. E., & Murphy, M. E. (2016). Deciphering the substrate specificity of SbnA, the enzyme catalyzing the first step in staphyloferrin B biosynthesis. Biochemistry, 55(6), 927-939. doi: 1021/acs.biochem.5b01045 DOI: https://doi.org/10.1021/acs.biochem.5b01045

Kranjec, C., Morales Angeles, D., Torrissen Mårli, M., Fernández, L., García, P., Kjos, M., & Diep, D. B. (2021). Staphylococcal biofilms: challenges and novel therapeutic perspectives. Antibiotics, 10(2), 1-28. doi: 3390/antibiotics10020131 DOI: https://doi.org/10.3390/antibiotics10020131

Krewer, C. C., Lacerda, I. P. D. S., Amanso, E. S., Cavalcante, N. B., Peixoto, R. D. M., Pinheiro, J. W., Jr., Costa, M. M. da, & Mota, R. A. (2013). Etiology, antimicrobial susceptibility profile of Staphylococcus spp. and risk factors associated with bovine mastitis in the states of Bahia and Pernambuco. Pesquisa Veterinária Brasileira, 33(5), 601-606. doi: 1590/S0100-736X2013000500009 DOI: https://doi.org/10.1590/S0100-736X2013000500009

Krömker, V., & Leimbach, S. (2017). Mastitis treatment reduction in antibiotic usage in dairy cows. Reproduction in Domestic Animals, 52(3), 21-29. doi: 1111/rda.1303 DOI: https://doi.org/10.1111/rda.13032

Langoni, H., Guimarães, F. F., Costa, E. O. D., Joaquim, S. F., & Menozzi, B. D. (2015). Celularidade do leite e unidades formadoras de colônias nas mastites causadas por Staphylococcus coagulase positiva e coagulase negativa. Pesquisa Veterinária Brasileira, 35(6), 518-524. doi: 1590/S0100-736X2015000600005 DOI: https://doi.org/10.1590/S0100-736X2015000600005

Lin, M. H., Shu, J. C., Huang, H. Y., & Cheng, Y. C. (2012). Involvement of iron in biofilm formation by Staphylococcus aureus. PloS One, 7(3), e34388. doi: 1371/journal.pone.0034388 DOI: https://doi.org/10.1371/journal.pone.0034388

Lopes, L. O., Lacerda, M. S., & Ronda, J. B. (2013). Uso de antibióticos na cura e controle de mastite clínica e subclínica causada por principais microorganismos contagiosos em bovinos leiteiros: revisão de literatura. Revista Cientifica Eletrônica de Medicina Veterinária, 21(1), 1-15.

Markey, B., Leonard, F., Archambault, M., Cullinane, A., & Maguire, D. (2013). Clinical veterinary microbiology e-book: clinical veterinary microbiology e-book. Elsevier Health Sciences.

Marques, V. F., Motta, C. C. D., Soares, B. D. S., Melo, D. A. D., Coelho, S. D. M. D. O., Coelho, I. D. S., Barbosa, H. S., & Souza, M. M. S. D. (2017). Biofilm production and beta-lactamic resistance in Brazilian Staphylococcus aureus isolates from bovine mastitis. Brazilian Journal of Microbiology, 48(1), 118-124. doi: 1016/j.bjm.2016.10.001 DOI: https://doi.org/10.1016/j.bjm.2016.10.001

Mashruwala, A. A., Pang, Y. Y., Rosario‐Cruz, Z., Chahal, H. K., Benson, M. A., Mike, L. A., Skaar E. P., Torres V. J., Nauseef, W. M., & Boyd, J. M. (2015). Nfu facilitates the maturation of iron‐sulfur proteins and participates in virulence in S taphylococcus aureus. Molecular Microbiology, 95(3), 383-409. doi: 1111/mmi.12860 DOI: https://doi.org/10.1111/mmi.12860

Merino, N., Toledo-Arana, A., Vergara-Irigaray, M., Valle, J., Solano, C., Calvo, E., Lopez, J. A., Foster, T. J., Penadés, J. R., & Lasa, I. (2009). Protein A-mediated multicellular behavior in Staphylococcus aureus. Journal of Bacteriology, 191(3), 832-843. doi: 1128/JB.01222-08 DOI: https://doi.org/10.1128/JB.01222-08

Mo, L., & Wang, Q. N. (1997). Rapid detection of methicillin-resistant staphylococci using polymerase chain reaction. International Journal of Infectious Diseases, 2(1), 15-20. doi: 1016/S1201-9712(97)90005-9 DOI: https://doi.org/10.1016/S1201-9712(97)90005-9

Mota, R. A., Medeiros, E. S. de, Santos, M. V. dos, Pinheiro Júnior, J. W., Moura, A. P. L., & Coutinho, L. C. A. (2012). Participação dos Staphylococcus spp na etiologia das mastites em bovinos leiteiros no estado de Pernambuco (Brasil). Ciência Animal Brasileira/Brazilian Animal Science, 13(1), 124-130. doi: 5216/cab.v13i1.3790 DOI: https://doi.org/10.5216/cab.v13i1.3790

Patel, R. (2005). Biofilms and antimicrobial resistance. Clinical Orthopaedics and Related Research (1976-2007), 437(437), 41-47. doi: 1097/01.blo.0000175714.68624.74 DOI: https://doi.org/10.1097/01.blo.0000175714.68624.74

Rao, S., Linke, L., Magnuson, R., Jauch, L., & Hyatt, D. R. (2022). Antimicrobial resistance and genetic diversity of Staphylococcus aureus collected from livestock, poultry and humans. One Health, 15(2022), 100407. doi: 1016/j.onehlt.2022.100407 DOI: https://doi.org/10.1016/j.onehlt.2022.100407

Rishi, P., Thakur, R., Kaur, U. J., Singh, H., & Bhasin, K. K. (2017). Potential of 2, 2′-dipyridyl diselane as an adjunct to antibiotics to manage cadmium-induced antibiotic resistance in Salmonella enterica serovar Typhi Ty2 strain. Journal of Microbiology, 55(2017), 737-744. doi: 1007/s12275-017-7040-0 DOI: https://doi.org/10.1007/s12275-017-7040-0

Rosa, D. S., Oliveira, S. A., Souza, R. F., Silva, A. A., Neto, Cunha, L. S. B., Fernandes, A. W., Soares, I. F. S., Teixeira, S. K. R., Aquino, S. R., Gouveia, G. V., Almeida, J. R. G. S., Naue, C. R., & Costa, M. M. (2022). Characterization of multidrug-resistant Staphylococcus aureus Isolates and comparison of methods of susceptibility to vancomycin. Current Microbiology, 79(12), 374. doi: 1007/s00284-022-03070-6 DOI: https://doi.org/10.1007/s00284-022-03070-6

Schönborn, S., Wente, N., Paduch, J. H., & Krömker, V. (2017). In vitro ability of mastitis causing pathogens to form biofilms. Journal of Dairy Research, 84(2), 198-201. doi: 1017/S0022029917000218 DOI: https://doi.org/10.1017/S0022029917000218

Snel, G. G. M., Malvisi, M., Pilla, R., & Piccinini, R. (2014). Evaluation of biofilm formation using milk in a flow cell model and microarray characterization of Staphylococcus aureus strains from bovine mastitis. Veterinary Microbiology, 174(3-4), 489-495. doi: 10.1016/j.vetmic.2014.09.020 DOI: https://doi.org/10.1016/j.vetmic.2014.09.020

Stepanović, S., Vuković, D., Dakić, I., Savić, B., & Švabić-Vlahović, M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods, 40(2), 175-179. doi: 1016/S0167-7012(00)00122-6 DOI: https://doi.org/10.1016/S0167-7012(00)00122-6

Suleiman, T. S., Karimuribo, E. D., & Mdegela, R. H. (2018). Prevalence of bovine subclinical mastitis and antibiotic susceptibility patterns of major mastitis pathogens isolated in Unguja island of Zanzibar, Tanzania. Tropical Animal Health and Production, 50(2018), 259-266. doi: 1007/s11250-017-1424-3 DOI: https://doi.org/10.1007/s11250-017-1424-3

Tremblay, Y. D., Caron, V., Blondeau, A., Messier, S., & Jacques, M. (2014). Biofilm formation by coagulase-negative staphylococci: impact on the efficacy of antimicrobials and disinfectants commonly used on dairy farms. Veterinary Microbiology, 172(3-4), 511-518. doi: 1016/j.vetmic.2014.06.007 DOI: https://doi.org/10.1016/j.vetmic.2014.06.007

Vasudevan, P., Nair, M. K. M., Annamalai, T., & Venkitanarayanan, K. S. (2003). Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Veterinary Microbiology, 92(1-2), 179-185. doi: 1016/S0378-1135(02)00360-7 DOI: https://doi.org/10.1016/S0378-1135(02)00360-7

Vesterholm-Nielsen, M., Olhom, L. M., Elmerdahl, O. J., & Moller, A. F. (1999). Occurrence of the blaZ gene in penicillin resistant Staphylococcus aureus isolated from bovine mastitis in Denmark. Acta Veterinaria Scandinavica, 40(1999), 279-86. doi: 1186/BF03547026 DOI: https://doi.org/10.1186/BF03547026

Yamada, S., Kaneda, T., Steib, P., Murakami, K., & Itami, K. (2019). Dehydrogenative Synthesis of 2,2′‐Bipyridyls through regioselective pyridine dimerization. Angewandte Chemie, 131(25), 8429-8433. doi: 1002/ange.201814701 DOI: https://doi.org/10.1002/ange.201814701

Zaatout, N., Ayachi, A., & Kecha, M. (2020). Staphylococcus aureus persistence properties associated with bovine mastitis and alternative therapeutic modalities. Journal of Applied Microbiology, 129(5), 1102-1119. doi: 1111/jam.14706 DOI: https://doi.org/10.1111/jam.14706

Zhou, Y. J., Liu, M. S., Kong, X. L., Alsam, S., Battah, S., Xie, Y. Y., Hider, R. C., & Zhou, T. (2015). Hexadentate 3-hydroxypyridin-4-ones with high iron (III) affinity: Design, synthesis and inhibition on methicillin resistant Staphylococcus aureus and Pseudomonas strains. European Journal of Medicinal Chemistry, 94(2015), 8-21. doi: 1016/j.ejmech.2015.02.050 DOI: https://doi.org/10.1016/j.ejmech.2015.02.050

Downloads

Published

2025-03-11

How to Cite

Nunes, A. C. B., Rosa, D. S., Freire, N. B., Fernandes, A. W. C., Souza, R. de F. S., Gouveia, G. V., … Costa, M. M. da. (2025). Interference of sodium alginate and 2,2’-bipyridyl on bacterial growth and biofilm produced by Staphylococcus aureus isolates from bovine mastitis. Semina: Ciências Agrárias, 46(2), 367–382. https://doi.org/10.5433/1679-0359.2025v46n2p367

Issue

Section

Articles