Analysis of statistical methods to estimate genotype-by-environment interaction for yield-based selection of new bean cultivars and lines

Authors

DOI:

https://doi.org/10.5433/1679-0359.2023v44n5p1805

Keywords:

Linear regression, Mixed models, Multivariate analysis, Phaseolus vulgaris L.

Abstract

This study aimed to assess the statistical methods available to estimate genotype-by-environment (GxE) for yield-based selection of new bean cultivars and lines, and identify a testing strategy capable of reducing the number of test years and producing reliable results. Fourteen genotypes were tested in 23 environments in Paraná state, Brazil, over three consecutive years. The yield data obtained in each environment were submitted to homogeneity of variance analysis, normality testing, individual and pooled analysis of variance (ANOVA) of all the environments. GxE interaction was studied using linear, multivariate, and mixed model regression. Analyses were performed using data from two and three years of assessment. For linear and mixed model regression, the number of years analyzed did not affect result interpretation. However, in multivariate analysis, genotype behavior varied in the environments studied according to the number of years analyzed. The results obtained indicate that two years of assessment were sufficient to indicate new cultivars adapted to different environments.

Downloads

Download data is not yet available.

Author Biographies

Henrique Guilherme Hisashi Kaneko, Universidade Estadual de Londrina

Doctoral Student in Postgraduate Program in Agronomy, Universidade Estadual de Londrina, UEL, Londrina, PR, Brazil.

Nelson da Silva Fonseca Júnior, Instituto de Desenvolvimento Rural do Paraná

Dr., Researcher (Retired), Instituto de Desenvolvimento Rural do Paraná, IDR/PR, Londrina, PR, Brazil.

Vania Moda Cirino, Instituto de Desenvolvimento Rural do Paraná

Dra., Researcher, Instituto de Desenvolvimento Rural do Paraná, IDR/PR, Londrina, PR, Brazil.

References

Annicchiarico, P. (1992). Cultivar adaptation and recommendation from alfalfa trials in Northern Italy. Journal of Genetics and Plant Breeding, 46, 269-278.

Companhia Nacional de Abastecimento (2023). Série histórica das safras. CONAB. https://www.conab.gov. br/info-agro/safras/serie-historica-das-safras/item/download/45942_24bab78cca84a1a5ca6086a4969e5f6a

Cornelius, P. L., Crossa, J., Seyedsader, M.S. (1996). Statistical tests and estimators of multiplicative models for genotype-by-environment interaction. In M. S. Kang, H. G. Gauch (Eds.), Genotype-by-environment interaction (pp. 199-234). Boca Raton, FL. DOI: https://doi.org/10.1201/9781420049374.ch8

Crossa, J., Cornelius, P. L. (1997). Sites regression and shifted multiplicative model clustering of cultivar trial sites under heterogeneity of error variances. Crop Science, 37(2), 406-415. doi: 10.2135/cropsci19970011183x003700020017x DOI: https://doi.org/10.2135/cropsci1997.0011183X003700020017x

Cruz, C. D. (2013). GENES - a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy, 35(3), 271-276. doi: 10.4025/actasciagron.v35i3.21251 DOI: https://doi.org/10.4025/actasciagron.v35i3.21251

Domingues, L. S., Ribeiro, N. D., Minetto, C., Souza, J. F. de, Antunes, I. F. (2013). Metodologias de análise de adaptabilidade e de estabilidade para a identificação de linhagens de feijão promissoras para o cultivo no Rio Grande do Sul. Semina: Ciências Agrárias, 34(3), 1065-1076. doi: 10.5433/1679-0359.2013v34n3p1065 DOI: https://doi.org/10.5433/1679-0359.2013v34n3p1065

Duarte, J. B., Vencovsky, R. (1999). Interação genótipos x ambientes: uma introdução à análise "AMMI". Sociedade Brasileira de Genética.

Eberhart, S. A., Russell, W. A. (1966). Stability parameters for comparing varieties 1. Crop Science, 6(1), 36-40. doi: 10.2135/cropsci1966.0011183x000600010011x DOI: https://doi.org/10.2135/cropsci1966.0011183X000600010011x

Food and Agriculture Organization (2020). World food and agriculture - statistical yearbook 2020. FAO. https://doi.org/10.4060/cb1329en DOI: https://doi.org/10.4060/cb1329en

Frutos, E., Galindo, M.P., Leiva, V. (2014). An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stochastic Environmental Research and Risk Assessment, 28(7), 1629-1641. doi: 10.1007/s00477-013-0821-z DOI: https://doi.org/10.1007/s00477-013-0821-z

Lin, C., Binns, M. R. (1988). A superiority measure of cultivar performance for cultivar × location data. Canadian Journal of Plant Science, 68(1), 193-198. doi: 10.4141/cjps88-018 DOI: https://doi.org/10.4141/cjps88-018

Pereira, H. S., Alvares, R. C., Melo, L. C., Costa, A. F. da, Carvalho, H. W. L. de, Faria, L. C. de, Souza, T. L. P. O. de. (2016). Interação genótipos por ambientes em linhagens de feijoeiro-comum com grãos carioca, avaliadas na Região Nordeste do Brasil. Semina: Ciências Agrárias, 37(4), 1745-1756. doi: 10.5433/1679-0359.2016v37n4p1745 DOI: https://doi.org/10.5433/1679-0359.2016v37n4p1745

Pontes, V. A., Jr., Melo, L. C., Pereira, H. S., Del Peloso, M. J., Faria, L. C., Wendland, A., Braz, A. J. B. P., Ferreira, S. B. (2012). Productive potential and interaction of elite bean lines with environments in the Central Cerrado of Brazil. Crop Breeding and Applied Biotechnology, 12(1), 8-16. doi: 10.1590/s1984-70332012000100002 DOI: https://doi.org/10.1590/S1984-70332012000100002

Resende, M. D. V. de. (2002). Genética biométrica e estatística no melhoramento de plantas perenes. EMBRAPA Floresta.

Resende, M. D. V. de. (2007). Matemática e estatística na análise de experimentos e no melhoramento genético. EMBRAPA Florestas.

Rocha, V. P. C., Moda-Cirino, V., Destro, D., Fonseca, N. da S. Jr., Prete, C. E. C. (2010). Adaptabilidade e estabilidade da característica produtividade de grãos dos grupos comerciais carioca e preto de feijão. Semina: Ciências Agrárias, 31(1), 39-54. doi: 10.5433/1679-0359. DOI: https://doi.org/10.5433/1679-0359.2010v31n1p39

Torga, P. P., Santos Melo, P. G., Pereira, H. S., Faria, L. C. de, Del Peloso, M. J., Melo, L. C. (2013). Decomposition of the interaction of common black bean group genotypes with the environment. Agricultural Sciences, 4(12), 683-688. doi: 10.4236/as.2013.412092 DOI: https://doi.org/10.4236/as.2013.412092

Wricke, G. (1965). Zur berechnung der okovalenz bei sommerweizen und hafer. Zeitschrift Fur. Pflanzenzuchtung, 52(1), 127–138

Yan, W., Hunt, L. A., Sheng, Q., Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE Biplot. Crop Science, 40(3), 597-605. doi: 10.2135/cropsci2000.403597x DOI: https://doi.org/10.2135/cropsci2000.403597x

Zobel, R. W., Wright, M. J., Gauch, H. G. (1988). Statistical analysis of a yield trial. Agronomy Journal, 80(3), 388-393. doi: 10.2134/agronj1988.00021962008000030002x DOI: https://doi.org/10.2134/agronj1988.00021962008000030002x

Downloads

Published

2023-12-13

How to Cite

Kaneko, H. G. H., Fonseca Júnior, N. da S., & Cirino, V. M. (2023). Analysis of statistical methods to estimate genotype-by-environment interaction for yield-based selection of new bean cultivars and lines. Semina: Ciências Agrárias, 44(5), 1805–1824. https://doi.org/10.5433/1679-0359.2023v44n5p1805

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.