Analysis of statistical methods to estimate genotype-by-environment interaction for yield-based selection of new bean cultivars and lines
DOI:
https://doi.org/10.5433/1679-0359.2023v44n5p1805Keywords:
Linear regression, Mixed models, Multivariate analysis, Phaseolus vulgaris L.Abstract
This study aimed to assess the statistical methods available to estimate genotype-by-environment (GxE) for yield-based selection of new bean cultivars and lines, and identify a testing strategy capable of reducing the number of test years and producing reliable results. Fourteen genotypes were tested in 23 environments in Paraná state, Brazil, over three consecutive years. The yield data obtained in each environment were submitted to homogeneity of variance analysis, normality testing, individual and pooled analysis of variance (ANOVA) of all the environments. GxE interaction was studied using linear, multivariate, and mixed model regression. Analyses were performed using data from two and three years of assessment. For linear and mixed model regression, the number of years analyzed did not affect result interpretation. However, in multivariate analysis, genotype behavior varied in the environments studied according to the number of years analyzed. The results obtained indicate that two years of assessment were sufficient to indicate new cultivars adapted to different environments.
Downloads
References
Annicchiarico, P. (1992). Cultivar adaptation and recommendation from alfalfa trials in Northern Italy. Journal of Genetics and Plant Breeding, 46, 269-278.
Companhia Nacional de Abastecimento (2023). Série histórica das safras. CONAB. https://www.conab.gov. br/info-agro/safras/serie-historica-das-safras/item/download/45942_24bab78cca84a1a5ca6086a4969e5f6a
Cornelius, P. L., Crossa, J., Seyedsader, M.S. (1996). Statistical tests and estimators of multiplicative models for genotype-by-environment interaction. In M. S. Kang, H. G. Gauch (Eds.), Genotype-by-environment interaction (pp. 199-234). Boca Raton, FL. DOI: https://doi.org/10.1201/9781420049374.ch8
Crossa, J., Cornelius, P. L. (1997). Sites regression and shifted multiplicative model clustering of cultivar trial sites under heterogeneity of error variances. Crop Science, 37(2), 406-415. doi: 10.2135/cropsci19970011183x003700020017x DOI: https://doi.org/10.2135/cropsci1997.0011183X003700020017x
Cruz, C. D. (2013). GENES - a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy, 35(3), 271-276. doi: 10.4025/actasciagron.v35i3.21251 DOI: https://doi.org/10.4025/actasciagron.v35i3.21251
Domingues, L. S., Ribeiro, N. D., Minetto, C., Souza, J. F. de, Antunes, I. F. (2013). Metodologias de análise de adaptabilidade e de estabilidade para a identificação de linhagens de feijão promissoras para o cultivo no Rio Grande do Sul. Semina: Ciências Agrárias, 34(3), 1065-1076. doi: 10.5433/1679-0359.2013v34n3p1065 DOI: https://doi.org/10.5433/1679-0359.2013v34n3p1065
Duarte, J. B., Vencovsky, R. (1999). Interação genótipos x ambientes: uma introdução à análise "AMMI". Sociedade Brasileira de Genética.
Eberhart, S. A., Russell, W. A. (1966). Stability parameters for comparing varieties 1. Crop Science, 6(1), 36-40. doi: 10.2135/cropsci1966.0011183x000600010011x DOI: https://doi.org/10.2135/cropsci1966.0011183X000600010011x
Food and Agriculture Organization (2020). World food and agriculture - statistical yearbook 2020. FAO. https://doi.org/10.4060/cb1329en DOI: https://doi.org/10.4060/cb1329en
Frutos, E., Galindo, M.P., Leiva, V. (2014). An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stochastic Environmental Research and Risk Assessment, 28(7), 1629-1641. doi: 10.1007/s00477-013-0821-z DOI: https://doi.org/10.1007/s00477-013-0821-z
Lin, C., Binns, M. R. (1988). A superiority measure of cultivar performance for cultivar × location data. Canadian Journal of Plant Science, 68(1), 193-198. doi: 10.4141/cjps88-018 DOI: https://doi.org/10.4141/cjps88-018
Pereira, H. S., Alvares, R. C., Melo, L. C., Costa, A. F. da, Carvalho, H. W. L. de, Faria, L. C. de, Souza, T. L. P. O. de. (2016). Interação genótipos por ambientes em linhagens de feijoeiro-comum com grãos carioca, avaliadas na Região Nordeste do Brasil. Semina: Ciências Agrárias, 37(4), 1745-1756. doi: 10.5433/1679-0359.2016v37n4p1745 DOI: https://doi.org/10.5433/1679-0359.2016v37n4p1745
Pontes, V. A., Jr., Melo, L. C., Pereira, H. S., Del Peloso, M. J., Faria, L. C., Wendland, A., Braz, A. J. B. P., Ferreira, S. B. (2012). Productive potential and interaction of elite bean lines with environments in the Central Cerrado of Brazil. Crop Breeding and Applied Biotechnology, 12(1), 8-16. doi: 10.1590/s1984-70332012000100002 DOI: https://doi.org/10.1590/S1984-70332012000100002
Resende, M. D. V. de. (2002). Genética biométrica e estatística no melhoramento de plantas perenes. EMBRAPA Floresta.
Resende, M. D. V. de. (2007). Matemática e estatística na análise de experimentos e no melhoramento genético. EMBRAPA Florestas.
Rocha, V. P. C., Moda-Cirino, V., Destro, D., Fonseca, N. da S. Jr., Prete, C. E. C. (2010). Adaptabilidade e estabilidade da característica produtividade de grãos dos grupos comerciais carioca e preto de feijão. Semina: Ciências Agrárias, 31(1), 39-54. doi: 10.5433/1679-0359. DOI: https://doi.org/10.5433/1679-0359.2010v31n1p39
Torga, P. P., Santos Melo, P. G., Pereira, H. S., Faria, L. C. de, Del Peloso, M. J., Melo, L. C. (2013). Decomposition of the interaction of common black bean group genotypes with the environment. Agricultural Sciences, 4(12), 683-688. doi: 10.4236/as.2013.412092 DOI: https://doi.org/10.4236/as.2013.412092
Wricke, G. (1965). Zur berechnung der okovalenz bei sommerweizen und hafer. Zeitschrift Fur. Pflanzenzuchtung, 52(1), 127–138
Yan, W., Hunt, L. A., Sheng, Q., Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE Biplot. Crop Science, 40(3), 597-605. doi: 10.2135/cropsci2000.403597x DOI: https://doi.org/10.2135/cropsci2000.403597x
Zobel, R. W., Wright, M. J., Gauch, H. G. (1988). Statistical analysis of a yield trial. Agronomy Journal, 80(3), 388-393. doi: 10.2134/agronj1988.00021962008000030002x DOI: https://doi.org/10.2134/agronj1988.00021962008000030002x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.