Active yeast supplementation on nutritional parameters of ewe lambs fed a high-concentrate diet

Authors

DOI:

https://doi.org/10.5433/1679-0359.2025v46n1p267

Keywords:

Probiotic, Saccharomyces cerevisiae, Sheep, Starch.

Abstract

This study aimed to evaluate the effects of active yeast supplementation on intake, apparent digestibility, nitrogen balance, and energy use in ewe lambs fed high-concentrate diets. Five Dorper × Santa Inês ewe lambs, with an average initial body weight of 54.1 ± 1.4 kg and 8 months of age, were housed in individual metabolism cages. Treatments included a control diet (without active yeast) and four levels of active yeast supplementation [Active Flora® - ICC, Louisville, Kentucky, USA, 2.0 × 10¹Ⱐcolony-forming units (CFU)], at inclusion rates of 0.15, 0.30, 0.45, and 0.60% of dry matter (DM) intake (kg animalâ»Â¹ dayâ»Â¹). Diets consisted of 20% corn silage and 80% concentrate, based on DM. The experiment followed a 5 × 5 Latin square design with five animals and five evaluation periods. Each period lasted 15 days, including 10 days for adaptation and 5 days for data collection, totaling 75 days. Data were analyzed using analysis of variance and regression at a significance level of 5%. Results showed a quadratic effect of yeast supplementation levels on DM (P = 0.027) and organic matter (OM) intake (P = 0.029) in g animalâ»Â¹ dayâ»Â¹, as well as on total carbohydrate intake (P = 0.026). A linear increase was observed in DM (P = 0.041) and OM (P = 0.043) intake in percentage of body weight (BW) and in g kgâ»Â¹ BW0.75 (P = 0.031 and P = 0.032, respectively), as well as for crude protein (P = 0.037) and non-fibrous carbohydrate intake (P = 0.041). Apparent nutrient digestibility was unaffected by treatments. Nitrogen (N) intake (P = 0.036) and urinary N excretion (P = 0.003) exhibited quadratic responses to yeast levels, while fecal N excretion (P = 0.043) and absorbed N (P = 0.045) increased linearly. Gross energy (GE) intake (P = 0.009), metabolizable energy (P = 0.019), and the metabolizability of ingested GE (P = 0.024) showed quadratic responses to yeast supplementation. However, treatments did not affect fecal GE, digestible energy, or urinary GE. Supplementing active yeast at levels between 0.31% and 0.36% of dietary DM improved intake patterns, nitrogen absorption, metabolizable energy availability, and GE metabolizability without altering the apparent digestibility of nutrients in ewe lambs fed diets containing 80% concentrate.

Downloads

Download data is not yet available.

Author Biographies

Tays Raniellen Miranda Feitosa, Universidade Federal do Norte do Tocantins

Dra., in Animal Science, Center of Agricultural Sciences, Universidade Federal do Norte do Tocantins, UFNT, Araguaína, TO, Brazil.

Luciano Fernandes Sousa, Universidade Federal do Norte do Tocantins

Dr., in Animal Science, Center of Agricultural Sciences, Universidade Federal do Norte do Tocantins, UFNT, Araguaína, TO, Brazil.

Deborah Alves Ferreira , Universidade Federal do Norte do Tocantins

Dra., in Animal Science, Center of Agricultural Sciences, Universidade Federal do Norte do Tocantins, UFNT, Araguaína, TO, Brazil.

Karla Alves Oliveira, Federal Institute of Education, Science and Technology of Triângulo Mineiro

Dra., in Animal Science, Instituto Federal do Triângulo Mineiro, IFTM, Uberaba, MG, Brazil.

Erica Beatriz Schultz, Federal University of Viçosa

PhD in Animal Science, Department of Animal Science, Universidade Federal de Viçosa, UFC, Viçosa, MG, Brazil.

Marcela Rodrigues de Oliveira , Federal University of Uberlândia

Student of the Master's Course in Animal Production, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil.

Marco Túlio Santos Siqueira, Universidade Estadual Paulista (Unesp)

M.e in Animal Science, Universidade Estadual Paulista Júlio de Mesquita Filho, UNESP/FCAV, Jaboticabal, SP, Brasil.

Lucas Eduardo Gonçalves Vilaça, Federal University of Uberlândia

Student of the Master's Course in Animal Production, UFU, Uberlândia, MG, Brazil. 

Jhone Tallison Lira de Sousa, Universidade Federal do Norte do Tocantins

Dr., in Animal Science, Center of Agricultural Sciences, Universidade Federal do Norte do Tocantins, UFNT, Araguaína, TO, Brazil.

Gilberto de Lima Macedo Junior, Federal University of Uberlândia

Dr., in Animal Science, UFU, Uberlândia, MG, Brazil.

References

Amin, A. B., & Mao, S. (2021). Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: a review. Animal Nutrition, 7(1), 31-41. doi: 10.1016/j.aninu.2020.10.005

Araújo, L. D. F., Dias, M. V. C., Brito, E. D., & Oliveira, S., Jr. (2009). Enriquecimento proteico de alimentos por levedura em fermentação semissólida: alternativa na alimentação animal. Revista Tecnologia & Ciência Agropecuária, 3(3), 47-53.

Association Official Analytical Chemists (2016). Official methods of analysis (20nd ed.). AOAC.

Azzaz, H. H., Murad, H. A., & Morsy, T. A. (2015). Utility of ionophores for ruminant animals: a review. Asian Journal of Animal Sciences, 9(6), 254-265. doi: 10.3923/ajas.2015.254.265

Bach, A., López-García, A., González-Recio, O., Elcoso, G., Fàbregas, F., Chaucheyras-Durand, F., & Castex, M. (2019). Changes in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cows. Journal of Dairy Science, 102(7), 6180-6198. doi: 10.3168/jds.2018-16105

Beauchemin, K. A., Yang, W. Z., Morgavi, D. P., Ghorbani, G. R., & Kautz, W. (2003). Effects of bacterial direct-fed microbials and yeast on site and extent of digestion, blood chemistry, and subclinical ruminal acidosis in feedlot cattle. Journal of Animal Science, 81(6), 1628-1640. doi: 10.2527/2003.8161628x

Blaxter, K. L., & Clapperton, J. L. (1965). Prediction of the amount of methane produced by ruminants. British Journal of Nutrition, 19(1-2), 511-522. doi: 10.1079/BJN19650046

Chaucheyras-Durand, F., Walker, N. D., & Bach, A. (2008). Effects of active dry yeasts on the rumen microbial ecosystem: past, present and future. Animal Feed Science and Technology, 145(1-4), 5-26. doi: 10.1016/j.anifeedsci.2007.04.019

Detmann, E., Souza, M. A., & Valadares, S. C., Fº. (2012). Métodos para análise de alimentos. Suprema.

Dias, A. L. G., Freitas, J. A., Micai, B., Azevedo, R. A., Greco, L. F., & Santos, J. E. P. (2018). Effect of supplemental yeast culture and dietary starch content on rumen fermentation and digestion in dairy cows. Journal of Dairy Science, 101(1), 201-221. doi: 10.3168/jds.2017-13241

Elghandour, M. M. Y., Tan, Z. L., Abu Hafsa, S. H., Adegbeye, M. J., Greiner, R., Ugbogu, E. A., Monroy, C., & Salem, A. Z. M. (2019). Saccharomyces cerevisiae as a probiotic feed additive to non and pseudoâ€ruminant feeding: a review. Journal of Applied Microbiology, 128(3), 658-674. doi: 10.1111/jam.14416

Elghandour, M. M., Abu Hafsa, S. H., Cone, J. W., Salem, A. Z., Anele, U. Y., & Alcala-Canto, Y. (2024). Prospect of yeast probiotic inclusion enhances livestock feeds utilization and performance: an overview. Biomass Conversion and Biorefinery, 14(3), 2923-2935. doi: 10.1007/s13399-022-02562-6

Fereli, F., Branco, A. F., Jobim, C. C., Coneglian, S. M., Granzotto, F., & Barreto, J. C. (2010). Monensina sódica e Saccharomyces cerevisiae em dietas para bovinos: fermentação ruminal, digestibilidade dos nutrientes e eficiência de síntese microbiana. Revista Brasileira de Zootecnia, 39(1), 183-190. doi: 10.1590/S1516-35982010000100024

Fonty, G., & Chaucheyras-Durand, F. (2006). Effects and modes of action of live yeasts in the rumen. Biologia, 61(6), 741-750. doi: 10.2478/s11756-006-0151-4

Gloria-Trujillo, A., Hernández-Sánchez, D., Crosby-Galván, M. M., Hernández-Mendo, O., Mata-Espinosa, M. Á., Pinto-Ruiz, R., Ayala-Monter, M. A., & Osorio-Teran, A. I. (2022). Performance and carcass characteristics of lambs fed diets supplemented with different levels of Saccharomyces cerevisiae. Revista Brasileira de Zootecnia, 51, e20200281. doi: 10.37496/rbz5120200281

Hall, M. B. (2000). Calculation of non-structural carbohydrate content of feeds that contain non-protein nitrogen. (Bulletin, 339). University of Florida.

Hassan, A. A., Salem, A. Z. M., Kholif, A. E., Samir, M., Yacout, M. H., Abu Hafsa, S. H., Mendoza, G. D., Elghandour, M. M. Y., Ayala, M., & Lopez, S. (2016). Performance of crossbred dairy Friesian calves fed two levels of Saccharomyces cerevisiae: intake, digestion, ruminal fermentation, blood parameters and faecal pathogenic bacteria. Animal Research Paper, 154(1), 1488-1498. doi: 10.1017/S0021859616000599

Hernández, J., Benedito, J. L., Abuelo, A., & Castillo, C. (2014). Ruminal acidosis in feedlot: from aetiology to prevention. The Scientific World Journal, 2014(1), 702572. doi: 10.1155/2014/702572

Kholif, A. E., Abdoa, M. M., Aneleb, U. Y., El-Sayeda, M. M., & Morsya, T. A. (2017). Saccharomyces cerevisiae does not work synergistically with exogenous enzymes to enhance feed utilization, ruminal fermentation and lactational performance of Nubian goats. Livestock Science, 206(8), 17-23. doi: 10.1016/j.livsci.2017.10.002

Kozloski, G. V. (2017). Bioquímica dos ruminantes. Fundação de Apoio a Tecnologia e Ciência-Editora UFSM.

Levene, H. (1960). Robust tests for equality of variances. In I. Olkin (Ed.), Contributions to probability and statistics; essays in honor of harold hotelling (pp. 278-292). Redwood City, CA: Stanford University Press.

Licitra, G., Hernandez, T. M., & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57(4), 347-358. doi: 10.1016/0377-8401(95)00837-3

Lima, D. M., Jr., Monteiro, P. D. B. S., Nascimento Rangel, A. H. do, Vale Maciel, M. do, Oliveira, S. E. O., & Freire, D. A. (2010). Fatores anti-nutricionais para ruminantes. Acta Veterinaria Brasilica, 4(3), 132-143.

Martin, A. K., & Blaxter, K. L. (1965). The energy cost of urea synthesis in sheep. In K. L. Blaxter (Ed.), Energy metabolism (pp. 83-91). London.

McCarthy, R. D., Jr., Klusmeyer, T. H., Vicini, J. L., Clark, J. H., & Nelson, D. R. (1989). Effects of source of protein and carbohydrate on ruminal fermentation and passage of nutrients to the small intestine of lactating cows. Journal of Dairy Science, 72(8), 2002-2016. doi: 10.3168/jds.S0022-0302(89)79324-3

Mohammed, S. F., Mahmood, F. A., & Abas, E. R. (2018). A review on effects of yeast (Saccharomyces cerevisiae) as feed additives in ruminants performance. Journal Entomology and. Zoology Studies, 6(2), 629-635.

Monnerat, J. P. I. D. S., Paulino, P. V. R., Detmann, E., Valadares, S. C., F., Valadares, R. D. F., & Duarte, M. S. (2013). Effects of Saccharomyces cerevisiae and monensin on digestion, ruminal parameters, and balance of nitrogenous compounds of beef cattle fed diets with different starch concentrations. Tropical Animal Health and Production, 45, 1251-1257. doi: 10.1007/s11250-013-0356-9

Mousa, K. M., El-Malky, O. M., Komonna, O. F., & Rashwan, S. E. (2012). Effect of some yeast and minerals on the productive and reproductive performance in ruminants. The Journal of American Science, 8(2), 291-303. doi: 10.7537/marsjas080212.01

National Research Council (2007). Nutrient requirements of small ruminants. National Academy Press.

Neumann, M., Ost, P. R., Pellegrini, L. G. D., Mello, S. E. G. D., Silva, M. A. A. D., & Nörnberg, J. L. (2008). Utilização de leveduras vivas (Saccharomyces cerevisiae) visando à produção de cordeiros Ile de France superprecoces em sistema de creep-feeding. Ciência Rural, 38(8), 2285-2292. doi: 10.1590/S0103-84782008000800030

Oliveira, B. M. L. D., Bitencourt, L. L., Silva, J. R. M., Dias, G. S., Jr., Branco, I. C. C., Pereira, R. A. N., & Pereira, M. N. (2010). Suplementação de vacas leiteiras com Saccharomyces cerevisiae cepa KA500. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 62(5), 1174-1182. doi: 10.1590/S0102-09352010000500021

Pienaar, G. H., Einkamerera, O. B., Van Der Merwea, H. J., Hugob, A., & Fair, M. D. (2015). The effect of an active live yeast product on the digestibility of finishing diets for lambs. Small Ruminant Research, 123(1), 8-12. doi: 10.1016/j.smallrumres.2014.11.001

Puniya, A. K., Salem, A. Z., Kumar, S., Dagar, S. S., Griffith, G. W., Puniya, M., Ravella, S. R., Kumar, N., Dhewa, T., & Kumar, R. (2015). Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity: a review. Journal of Integrative Agriculture, 14(3), 550-560. doi: 10.1016/S2095-3119(14)60837-6

Ran, T., Shen, Y., Saleem, A. M., AlZahal, O., Beauchemin, K. A., & Yang, W. (2018). Using ruminally protected and nonprotected active dried yeast as alternatives to antibiotics in finishing beef steers: growth performance, carcass traits, blood metabolites, and fecal Escherichia coli. Journal of Animal Science, 96(10), 4385-4397. doi: 10.1093/jas/sky272

Rodrigues, É., Arrigoni, M. D. B., Andrade, C. R. M., Martins, C. L., Millen, D. D., Parra, F. S., Jorge, A. M., & Andrighetto, C. (2013). Performance, carcass characteristics and gain cost of feedlot cattle fed a high level of concentrate and different feed additives. Revista Brasileira de Zootecnia, 42(1), 61-69. doi: 10.1590/S1516-35982013000100009

Rodrigues, G. R. D., Schultz, E. B., Siqueira, M. T. S., Fonseca, A. L., Oliveira, M. R., Silva, D. A. P., & Macedo, G. L., Jr. (2021). Use of active and inactive yeasts in lamb diets: intake, digestibility, and metabolism. Veterinária Notícias, 27(2), 19-43. doi: 10.14393/VTN-v27n2-2021-58884

Sales, J. (2011). Effects of Saccharomyces cerevisiae supplementation on ruminal parameters, nutrient digestibility and growth in sheep: a meta-analysis. Small Ruminant Research, 100(1), 19-29. doi: 10.1016/j.smallrumres.2011.05.012

Sartori, E. D., Canozzi, M. E. A., Zago, D., Prates, Ê. R., Velho, J. P., & Barcellos, J. O. J. (2017). The effect of live yeast supplementation on beef cattle performance: a systematic review and meta-analysis. Journal of Agricultural Science, 9(4), 21-37. doi: 10.5539/JAS.V9N4P21

Statistical Analysis System Institute (2015). SAS/STAT User's guide: version 9.4. SAS Institute Inc.

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality. Biometrika, 52(3/4), 591-609. doi: 10.1093/biomet/52.3-4.591

Siddiqui, M. S., Thodey, K., Trenchard, I., & Smolke, C. D. (2012). Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Research, 12(2), 144-170. doi: 10.1111/j.1567-1364.2011.00774.x

Silva, D. J., & Queiroz, A. C. (2002). Análise de alimentos (métodos químicos e biológicos) (2a ed.). UFV. Imp. Univ.

Silva, J. F. C., & Leão, M. I. (1979). Fundamentos de nutrição de ruminantes. Livroceres.

Sniffen, C. J., O'Connor, J. D., Van Soest, P. J., Fox, D. G., & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, 70(11), 3562-3577. doi: 10.2527/1992.70113562x

Street, J. C., & Butcher, J. E., & Harris L. E. (1964). Estimating urine energy from urine nitrogen. Journal of Animal Science, 23(4), 1039-1041. doi: 10.2527/jas1964.2341039x

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods of dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Animal Science, 74(10), 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2

Van Soest, P. J. (1994). Nutritional ecology of the ruminant (2nd ed.). Cornell University Press.

Wallace, R. J., & Newbold, C. J. (1995). Microbial feed additives for ruminants. In C. J. Newbold, Probiotics: prospects of use in opportunistic infections (pp. 259-278). Herborn-Dill: Institute for Microbiology and Biochemistry.

Weiss, W. P. (1999). Energy prediction equations for ruminant feeds. Proceedings of the Cornell Nutrition Conference for Feed Manufacturers, Ithaca, New York, USA, 61.

Zeoula, L. M., Fereli, F., Prado, I. N., Geron, L. J. V., Caldas, S. F., Neto, Prado, O. P. P. P., & Maeda, E. M. (2006). Digestibilidade e balanço de nitrogênio de rações com diferentes teores de proteína degradável no rúmen e milho moído como fonte de amido em ovinos. Revista Brasileira de Zootecnia, 35(5), 2179-2186. doi: 10.1590/S1516-35982006000700039

Zhang, X., Dong, X., Wanapat, M., Shah, A. M., Luo, X., Peng, Q., Kang, K., Hu, R., Guan, J., & Wang, Z. (2022). Ruminal pH pattern, fermentation characteristics and related bacteria in response to dietary live yeast (Saccharomyces cerevisiae) supplementation in beef cattle. Animal Bioscience, 35(2), 184-195. doi: 10.5713/ab.21.0200

Downloads

Published

2025-02-18

How to Cite

Feitosa, T. R. M., Sousa, L. F., Ferreira , D. A., Oliveira, K. A., Schultz, E. B., Oliveira , M. R. de, … Macedo Junior, G. de L. (2025). Active yeast supplementation on nutritional parameters of ewe lambs fed a high-concentrate diet. Semina: Ciências Agrárias, 46(1), 267–284. https://doi.org/10.5433/1679-0359.2025v46n1p267

Issue

Section

Articles