Rações para frangos formuladas com deficiências de fósforo, cálcio e energia suplementada com enzimas exógenas

Autores

DOI:

https://doi.org/10.5433/1679-0359.2021v42n5p3029

Palavras-chave:

Frangos de corte, Desempenho, Fitase, Metabolismo, Complexo enzimático.

Resumo

Três experimentos foram conduzidos para determinar o efeito da enzima fitase, sozinha ou associada a um complexo enzimático, em dietas de milho-farelo de soja deficientes em fósforo disponível (Pd), cálcio (Ca) e energia metabolizável (EM) no desempenho de frangos de corte, valores de EM e digestibilidade de aminoácidos da dieta. Para ambos os experimentos, 1.538 frangos Cobb 500 machos foram alocados em 5 tratamentos: controle positivo (CP, ração basal), controle negativo 1 (CN1, CP menos 0,15% de Pd, 0,16% Ca e 68 kcal kg-1 EM), negativo controle 2 (CN2, CP menos 0,15% de Pd, 0,16% de Ca e 101 kcal kg-1 de ME em relação à dieta CP), CN1 mais fitase (CN1 + F) e CN2 mais fitase mais complexo multienzimático (CN2 + F + E). O ganho de peso corporal e o consumo de ração foram medidos de 1 a 21 dias e de 1 a 42 dias, e a taxa de conversão alimentar (CA) corrigida para mortalidade foi calculada. No segundo e terceiro experimentos, foram analisados os valores de energia metabolizável aparente corrigida para o balanço de nitrogênio (EMAn) e digestibilidade estandardizada de aminoácidos, respectivamente, em adição à fitase e ao complexo enzimático. No primeiro experimento, a suplementação enzimática aumentou (P < 0,05) o ganho de peso (GP) aos 21 dias e 42 dias em relação aos controles negativos. A inclusão de fitase melhorou (P < 0,05) a taxa de conversão alimentar na fase inicial, em comparação com a dieta CN1. No segundo experimento, a suplementação enzimática não afetou (P > 0,05) os valores de EMAn. No terceiro experimento, ambos os tratamentos enzimáticos melhoraram (P < 0,05) a digestibilidade dos aminoácidos nas dietas experimentais, em comparação com as dietas deficientes. A suplementação de fitase e carboidrases preserva o desempenho de frangos alimentados com dietas deficientes em Pd, Ca e EM e melhora a digestibilidade dos aminoácidos.

Métricas

Carregando Métricas ...

Biografia do Autor

Rodrigo de Freitas Jacob, Universidade Federal de Viçosa

Aluno do Curso de Doutorado em Zootecnia do Departamento de Zootecnia, Universidade Federal de Viçosa, UFV, Viçosa, MG, Brasil.

Luiz Fernando Teixeira Albino, Universidade Federal de Viçosa

Prof. Dr., Programa de Pós-Graduação em Zootecnia, Departamento de Zootecnia, UFV, Viçosa, MG, Brasil.

Arele Arlindo Calderano, Universidade Federal de Viçosa

Prof. Dr., Programa de Pós-Graduação em Zootecnia, Departamento de Zootecnia, UFV, Viçosa, MG, Brasil.

Romário Duarte Bernardes, Universidade Federal de Viçosa

Aluno do Curso de Mestrado em Zootecnia do Programa de Pós-Graduação em Zootecnia do Departamento de Zootecnia da UFV, Viçosa, MG, Brasil.

Horácio Santiago Rostagno, Universidade Federal de Viçosa

Prof. Dr., Programa de Pós-Graduação em Zootecnia, Departamento de Zootecnia, UFV, Viçosa, MG, Brasil.

Maurílio de Lucas Xavier Júnior, Universidade Federal de Viçosa

Aluno do Curso de Doutorado em Zootecnia do Departamento de Zootecnia, Universidade Federal de Viçosa, UFV, Viçosa, MG, Brasil.

Renan Hernandes Lino, Universidade Federal de Viçosa

Aluno do Curso de Graduação em Zootecnia do Departamento de Zootecnia, UFV, Viçosa, MG, Brasil.

Warley Júnior Alves, DUniversidade Federal de Viçosa

Aluno do Curso de Doutorado em Zootecnia do Departamento de Zootecnia, Universidade Federal de Viçosa, UFV, Viçosa, MG, Brasil.

Samuel Oliveira Borges, Universidade Federal de Viçosa

Aluno do Curso de Graduação em Zootecnia do Departamento de Zootecnia, UFV, Viçosa, MG, Brasil.

Thiago Ferreira Diana, Universidade Federal de Viçosa

Aluno do Curso de Doutorado em Zootecnia do Departamento de Zootecnia, Universidade Federal de Viçosa, UFV, Viçosa, MG, Brasil.

Referências

Akter, M. M., Graham, H., & Iji, P. A. (2017). Influence of different levels of calcium, non-phytate phosphorus and phytase on apparent metabolizable energy, nutrient utilization, plasma mineral concentration and digestive enzyme activities of broiler chickens. Journal of Applied Animal Research, 46(1), 278-286. doi: 10.1080/09712119.2017.1295972

Amerah, A. M. (2015). Interactions between wheat characteristics and feed enzyme supplementation in broiler diets. Animal Feed Science Technology, 199(1), 1-9. doi: 10.1016/j.anifeedsci.2014.09.012

Amerah, A. M., Plumstead, P. W., Barnard, L. P., & Kumar, A. (2014). Effect of calcium level and phytase addition on ileal phytate degradation and amino acid digestibility of broilers fed corn-based diets. Poultry Science, 93(4), 906-915. doi: 10.3382/ps.2013-03465

Amerah, A. M., Romero, L. F., Awati, A., & Ravindran, V. (2016). Effect of exogenous xylanase, amylase, and protease as single or combined activities on nutrient digestibility and growth performance of broilers fed corn/soy diets. Poultry Science, 96(4), 807-816. doi: 10.3382/ps/pew297

Bournazel, M., Lessire, M., Klein, S., Même, N., Peyronnent, C., Quinsac, A., Duclos, M. J. & Narcy, A. (2018). Phytase supplementation in diets rich in fiber from rapeseed enhances phosphorus and calcium digestibility but not retention in broiler chickens. Poultry Science, 97(5), 1627-1640. doi: 10.3382/ps/ pex446

Choct, M. (1997). Feed non-starch polysaccharides: chemical structures and nutritional significance. Feed Milling International, 191(1), 13-26. doi: 10.1071/AN15276

Cowieson, A. J., Acamovic, T., & Bedford, M. R., (2004). The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. British Poultry Science, 45(1), 101-108. doi: 10.1080/00071660410001668923

Cowieson, A. J., Aureli, R., Guggenbuhl, P., & Fru-Nji, F. (2015). Possible involvement of myo-inositol in the physiological response of broilers to high doses of microbial phytase. Animal Production Science, 55(6), 710-719. doi: 10.1071/AN14044

Cowieson, A. J., & Bedford, M. R. (2009). The effect of phytase and carbohydrase on ileal amino acid digestibility in monogastric diets: complimentary mode of action?. World’s Poultry Science Journal, 65(4), 609-624. doi: 10.1017/S0043933909000427

Cowieson, A. J., & Ravindran, V. (2007). Effect of phytic acid and microbial phytase on the flow and amino acid composition of endogenous protein at the terminal ileum of growing broiler chickens. British Journal of Nutrition, 98(4), 745-752. doi: 10.1017/S0007114507750894

Cowieson, A. J., & Roos, F. F. (2016). Toward optimal value creation through the application of exogenous mono-component protease in the diets of non-ruminants. Animal Feed Science and Technology, 221(Part B), 331-340. doi: 10.1016/j.anifeedsci.2016.04.015

Cowieson, A. J., Ruckebusch, J.-P., Sorbara, J. O. B., Wilson, J. W., Guggenbuhl, P., & Roos, F. F. (2017). A systematic view on the effect of phytase on ileal amino aciddigestibility in broilers. Animal Feed Science and Technology, 225(2017), 182-194. doi: 10.1016/j.anifeedsci.2017.01.008

Dersjant-Li, Y., Awati, A., Schulze, H., & Partridge, G. (2015). Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. Journal of the Science of Food and Agriculture, 95(5), 878-896. doi: 10.1002/jsfa.6998

Dersjant-Li, Y., & Kwakernaak, C. (2019). Comparative effects of two phytases versus increasing the inorganic phosphorus content of the diet, on nutrient and amino acid digestibility in boilers. Animal Feed Science and Technology, 253(2019), 166-180. doi: 10.1016/j.anifeedsci.2019.05.018

Dessimoni, G. V., Sakomura, N. K., Donato, D. C. Z., Goldflus, F., Ferreira, N. T., & Dalólio, F. S. (2019). Effect of supplementation with Escherichia coli phytase for broilers on performance, nutrient digestibility, minerals in the tibia and diet cost. Semina: Ciências Agrárias, 40(2), 767-780. doi: 10. 5433/1679-0359.2019v40n2p767

Detmann, E., Souza, M. A. de, Valadares, S. C., Fº., Queiroz, A. C., Berchielli, T. T., Saliba, E. O. S. Azevedo, J. A. G. (2012). Métodos para análise de alimentos. Visconde do Rio Branco, MG: INCT-CA.

Diana, T. F., Albino, L. F. T., Rostagno, H. S., Almeida, B. F., Xavier, M. L., Jr., Aleixo, P. E.,... Calderando, A. A. (2020). Xylanase and β-glucanase in maize- and soybean meal-based diets for broilers. Semina: Ciências Agrárias, 41(6), 3259-3274. doi: 10.5433/1679-0359.2020v41n6Supl2p3259

Francesch, M., & Geraert, P. A. (2009). Enzyme complex containing carbohydrases and phytase improves growth performance and bone mineralization of broilers fed reduced nutrient corn-soybean-based diets. Poultry Science, 88(9), 1915-1924. doi: 10.3382/ps.2009-00073

Fru-Nji, F., Kluenter, A., Fischer, M., & Pontoppidan, K. (2011). A feed serine protease improves broiler performance and increases protein and energy digestibility. Japan Poultry Science Association, 48(4), 239-246. doi: 10.2141/jpsa.011035

Gallardo, C., Dadalt, J. C., Kiarie, E., & Trindade, A. T., Neto. (2017). Effects of multi carbohydrase and phytase on standardized ileal digestibility of amino acids and apparent metabolizable energy in canola meal fed to broiler chicks. Poultry Science, 96(9), 3305-3313. doi: 10.3382/ps/pex141

Gallardo, C., Dadalt, J. C., & Trindade, A. T., Neto. (2018). Nitrogen retention, energy, and amino acid digestibility of wheat bran, without or with multicarbohydrase and phytase supplementation, fed to broiler chickens. Journal of Animal Science, 96(6), 2371-2379. doi: 10.1093/jas/sky062

Gallardo, C., Dadalt, J. C., & Trindade, A. T., Neto. (2019). Carbohydrases and phytase with rice bran, effects on amino acid digestibility and energy use in broiler chickens. Animal, 14(3), 482-490. doi: 10. 1017/S1751731119002131

Jamroz, D., Jakobsen, K., Knudsen, K. E. B., Wiliczkiewicz, A., & Orda, J. (2002). Digestibility and energy value of nonstarch polysaccharides in young chickens, ducks and geese, fed diets containing high amounts of barley. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 131(3), 657-668. doi: 10.1016/S1095-6433(01)00517-7

Jaworski, N. W., Lærke, H. N., Bach Knudsen, K. E., & Stein, H. H. (2015). Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains. Journal of Animal Science, 93(3), 1103-1113. doi: 10.2527/jas2014-8147

Karimi, A., Min, Y., Lu, C., Coto, C., Bedford, M. R., & Waldroup, P. W. (2013). Assessment of potential enhancing effects of a carbohydrase mixture on phytase efficacy in male broiler chicks fed phosphorus-deficient diets from 1 to 18 days of age. Poultry Science, 92(1), 192-198. doi: 10.3382/ps.2012-02558

Kiarie, E., Romero, L. F., & Ravindran, V. (2014). Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poultry Science, 93(5), 1186-1196. doi: 10.3382/ps.2013-03715

Lu, H., Adedokun, S. A., Preynat, A., Legrand-Defretin, V., Geraert, P. A., Adeola, O., & Ajuwpn, K. M. (2013). Impact of exogenous carbohydrases and phytase on growth performance and nutrient digestibility in broilers. Canadian Journal of Animal Science, 93(2), 243-249. doi: 10.4141/cjas2012-138

Mahmood, T., Mirza, M. A., Nawaz, H., Shahid, M., Athar, M., & Hussein, M. (2017). Effect of supplementing exogenous protease in low protein poultry by-product meal based diets on growth performance and nutrient digestibility in broilers. Animal Feed Science, 228(1), 23-31. doi: 10.1016/j. anifeedsci.2017.01.012

Malathi, V., & Devegowda, G. (2001). In vitro evaluation of nonstarch polysaccharide digestibility of feed ingredients by enzymes. Poultry Science, 80(3), 302-305. doi: 10.1093/ps/80.3.302

Meng, X., & Slominski, B. A. (2005). Nutritive values of corn, soybean meal, canola meal and peas for broiler chickens as affected by a multicarbohydrase preparation of cell wall degrading enzymes. Poultry Science, 84(8), 1242-1251. doi: 10.1093/ps/84.8.1242

Montanhini, R. Neto, Ceccantini, M. L., & Fernandes, J. I. (2012). Productive performance, intestinal morphology and carcass yield of broilers fed conventional and alternative diets containing commercial enzymatic complex. Poultry Science, 11(8), 505-516. doi: 10.3923/ijps.2012.505.516

Murugesan, G. R., Romero, L. F., & Persla, M. E. (2014). Effects of protease, phytase and a Bacillus sp. direct-fed microbial on nutrient and energy digestibility, ileal brush border digestive enzyme activity and cecal short- chain fatty acid concentration in broiler chickens. Plos One, 9(7), e101888. doi: 10.13 71/journal.pone.0101888

Olukosi, O. A., & Adeola, O. (2008). Whole body nutrient accretion, growth performance and total tract nutrient retention responses of broilers to supplementation of xylanase and phytase individually or in combination in wheat-soybean meal based diets. Journal of Poultry Science, 45(3), 192-198. doi: 10.21 41/jpsa.45.192

Olukosi, O. A., Cowieson, A. J., & Adeola, O. (2007). Age-related influence of a cocktail of xylanase, amylase, and protease or phytase individually or in combination in broilers. Poultry Science, 86(1), 77-86. doi: 10.1093/ps/86.1.77

Pieniazek, J., Smith, K. A., Williams, M. P., Manangi, M. K., Vazquez-Anon, M., Solbak, A., Miller, M., & Lee, T. (2017). Evaluation of increasing levels of a microbial phytase in phosphorus deficiente broiler diets via live broiler performance, tibia bone ash, apparent metabolizable energy, and amino acid digestibility. Poultry Science, 96(2), 370-382. doi: 10.3382/ps/pew225

R Core Team (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Rahimi, Z. S., Modirsanei, M., & Mansoori, B. (2020). The effect of enzymatic feed pretreatment on bioavailability of phytate phosphorous, performance, and bone indices of tibia in broilers. Journal of Applied of Poultry Research, 9(2), 372-382. doi: 10.1016/j.japr.2019.12.008

Ribeiro, V., Jr., Salguero, S. C., Gomes, G., Barros, V. R. S. M., Silva, D. L., Barreto, S. L. T.,... Albino, L. F. T. (2016). Efficacy and phosphorus equivalency values of two bacterial phytases (Escherichia coli and Citrobacter braakii) allow the partial reduction of dicalcium phosphate added to the diets of broiler chickens from 1 to 21 days of age. Animal Feed Science and Technology, 221(Part A), 226-233. doi: 10. 1016/j.anifeedsci.2016.09.008

Romero, L. F., Parsons, C. M., Utterback, P. L., Plumstead, P. W., & Ravindran, V. (2013). Comparative effects of dietary carbohydrases without or with protease on the ileal digestibility of energy and amino acids and AMEn in young broilers. Animal Feed Science Technology, 181(1-4), 35-44. doi: 10.1016/j. anifeedsci.2013.02.001

Rostagno, H. S., Albino, L. F. T., Hannas, M. I., Donzele, J. L., Sakomura, N. K., Perazzo, F. G.,… Brito, C. O. (2017). Brazilian tables for poultry and swine: composition of feedstuffs and nutritional requirements (4nd ed.). Viçosa, MG: UF, Animal Science Department.

Rutherfurd, S. M., Chung, T. K., Thomas, D. V., Zou, M. L., & Moughan, P. J. (2012). Effect of a novel phytase on growth performance, apparent metabolizable energy, and the availability of minerals and amino acids in a low-phosphorus corn-soybean meal diet for broilers. Poultry Science, 91(5), 1118-1127. doi: 10.3382/ps.2011-01702

Sakomura, N. K., & Rostagno, H. S. (2016). Research methods in monogastric nutrition (2nd ed.). Jaboticabal, SP: FUNEP.

Santos, F. R., Hruby, M., Pierson, E. E. M., Remus, J. C., & Sakomura, N. K. (2008). Effect of phytase supplementation in diets on nutrient digestibility and performance in broiler chicks. Journal of Applied Poultry Research, 17(2), 191-201. doi: 10.3382/japr.2007-00028

Schramm, V. G., Durau, J. F., Barrilli, L. N. E., Sorbara, J. O. B., Cowieson, A. J., Felix, A. P., & Maiorka, A. (2017). Interaction between xylanase and phytase on the digestibility of corn and a corn/soy diet for broiler chickens. Poultry Science, 96(5), 1204-1211. doi: 10.3382/ps/pew356

Siegert, W., Zuber, T., Sommerfeld, V., Krieg, J., Feuerstein, D., Kurrle, U., & Rodehutscord, M. (2019). Prececal amino acid digestibility and phytate degradation in broiler chickens when using different oilseed meals, phytase and protease supplements in the feed. Poultry Science, 98(11), 5700-5713. doi: 10.3382/ps/pez355

Selle, P. H., Creswell, D. C., Cadagon, D. J., Partridge, G. G., & Scott, T. (2006). Phytase supplementation of wheat based broiler diets reduces dependence on meat and bone meal. Journal of Poultry Science, 43(4), 330-338. doi: 10.2141/jpsa.43.330

Selle, P. H., & Ravindran, V. (2007). Microbial phytase in poultry nutrition. Animal feed Science and Technology, 135(1-2), 1-41. doi: 10.1016/j.anifeedsci.2006.06.010

Selle, P. H., Cowieson, A. J., Cowieson, N. P., & Ravindran, V. (2012). Protein-phytate interactions in pig and poultry nutrition: a reappraisal. Nutrition Research Reviews, 25(1), 1-17. doi: 10.1017/s095442241 1000151

Slominski, B. A. (2011). Recent advances in research on enzymes for poultry diets. Poultry Science, 90(9), 2013-2023. doi: 10.3382/ps.2011-01372

Truong, H. H., Bold, R. M., Liu, S. Y., & Selle, P. H. (2015). Standard phytase inclusion in maize-based broiler diets enhances digestibility coefficients of starch,amino acids and sodium in four small intestinal segments and digestive dynamics of starch and protein. Animal Feed Science Technology, 209(1), 240-248. doi: 10.1016/j.anifeedsci.2015.08.012

Van Keulen, J., & Young, B. A. (1977). Evaluation of Acid-Insoluble Ash as a Natural Marker in Ruminant Digestibility Studies. Journal of Animal Science, 44(2), 282-287. doi: 10.2527/jas1977.442282x

Walk, C. L., Santos, T. T., & Bedford, M. R. (2014). Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poultry Science, 93(5), 1172-1177. doi: 10.3382/ps.2013-03571

Walk, C. L., Pirgozliev, V., Juntunen, K., Paloheimo, M., & Ledoux, D. R. (2018). Evaluation of novel protease enzymes on growth performance and apparent ileal digestibility of amino acids in poultry: enzyme screening. Poultry Science, 97(6), 2123-2138. doi: 10.3382/ps/pey080

Walk, C. L., & Poernama, F. (2018). Evaluation of phytase, xylanase, and protease in reduced nutrient diets fed to broilers. Journal Applied Poultry Research, 28(1), 85-93. doi: 10.3382/japr/pfy022

Walk, C. L. & Rama Rao, S. V. (2020). Increasing dietary phytate has a significant anti-nutrient effect on apparent ileal amino acid digestibility and digestible amino acid intake requiring increasing doses of phytase as evidenced by prediction equations in broilers. Poultry Science, 99(1), 290-300. doi: 10.3382/ ps/pez489

Yuan, L., Wang, M., Zhang, X., & Wang, Z. (2017). Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers. Plos One, 12(3), e0173941. doi: 10.1371/journal.pone.0173941

Ziarat, M. M., Kermanshahi, H., Mogaddam, H. N., & Heravi, R. M. (2020). Performance of an Escherichia coli phytase expressed in Lactococcus lactis on nutriente retention, boné traits and intestinal morphology in broiler chickens. Journal of Animal Physiology and Animal Nutrition, 104(3), 1-9. doi: 10.1111/jpn.13332

Downloads

Publicado

2021-07-02

Como Citar

Jacob, R. de F., Albino, L. F. T., Calderano, A. A., Bernardes, R. D., Rostagno, H. S., Xavier Júnior, M. de L., Lino, R. H., Alves, W. J., Borges, S. O., & Diana, T. F. (2021). Rações para frangos formuladas com deficiências de fósforo, cálcio e energia suplementada com enzimas exógenas. Semina: Ciências Agrárias, 42(5), 3029–3046. https://doi.org/10.5433/1679-0359.2021v42n5p3029

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)