New bicompartmental model: an application for the production of gases using the in vitro technique
DOI:
https://doi.org/10.5433/1679-0359.2023v44n5p1733Keywords:
Corn silage, Mathematical models, Proposed model, Ruminal kinetics, Sunflower silage.Abstract
The purpose of this study was to propose a bicompartmental nonlinear model and to identify the bestperforming model between the proposed model and the bicompartmental logistic (BL) mode regarding the quality of fit to the curve of cumulative gas production (CGP) using corn silage, sunflower, and their mixtures. Gas production was measured 2, 3, 4, 6, 8, 9, 10, 12, 15, 19, 24, 30, 36, 48, 72, and 96 h after beginning the in vitro fermentation process. The generated data were used to generate the parameters of each model tested using the stats package of the R computational tool version 4.0.4. The mathematical models were subjected to the following selection criteria: the adjusted coefficient of determination (Raj. ), residual mean square (RMS), mean absolute deviation (MAD), and Akaike information criterion (AIC). It was demonstrated that the proposed model had better performance with a high Raj., and lower values of RMS, AIC, and MAD than the bicompartmental logistic model for the prediction of the parameters of cumulative gas production (CGP), per to present a superior fit in the set of criteria according to the methodology and conditions in which the present study was developed.
Downloads
References
Aragadvay-Yungán, R. G., Rayas Amor, A. A., Heredia-Nava, D., Estrada-Flores, J. G., Martínez-Castañeda, F. E., & ArriagaJordán, C. M. (2015). Evaluación in vitro del ensilaje de girasol (helianthus annuus l.) solo y combinado con ensilaje de maíz. Revista Mexicana de ciencias pecuarias, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, 6(3), 315-327. doi: 10.22319/rmcp.v6i3.4094 DOI: https://doi.org/10.22319/rmcp.v6i3.4094
Assis, J. R. de, Assis, A. C. M., & Fernandes, G. A. (2021). Mathematical modeling applied to ruminal digestion and gas production in vitro. Scientific Electronic Archives, 14(4), 1-10. doi: 10.36560/14420211317 DOI: https://doi.org/10.36560/14420211317
Cabral, Í. D. S., Azevêdo, J. A. G., Pina, D. D. S., Pereira, L. G. R., Fernandes, H. J., Almeida, F. M. de, & Cirne, L. G. A. (2019). Evaluation of models utilized in in vitro gas production from tropical feedstuffs. Semina: Ciências Agrárias, 40(1), 443-455. doi: 10.5433/1679-0359.2019v40n1p443 DOI: https://doi.org/10.5433/1679-0359.2019v40n1p443
Emiliano, P. C., Vivanco, M. J. F., & De Menezes, F. S. (2014). Information criteria: How do they behave in different models?. Computational Statistics & Data Analysis, 69, 141-153. doi: 10.1016/j. csda.2013.07. 032 DOI: https://doi.org/10.1016/j.csda.2013.07.032
Fernandes, T. J., Pereira, A. A., Muniz, J. A., & Savian, T. V. (2014). Seleção de modelos não lineares para a descrição das curvas de crescimento do fruto do cafeeiro. Coffee Science, 9(2), 207-2015. http://www.sbicafe.ufv.br:80/handle/ 123456789/8029
Mello, R., Magalhães, A. L. R., Breda, F. C., & Regazzi, A J. (2008). Models for fit of gas production in sunflower and corn silages. Pesquisa Agropecuária Brasileira, 43(2), 261-269. doi: 10.1590/ S0100-204X2008000200016 DOI: https://doi.org/10.1590/S0100-204X2008000200016
Mjoun, K. (2018). 72 evaluation of different gas production models when applied to ruminants feeds. Journal of Animal Science, 96(Suppl_2), 37-38. https://academic.oup.com/jas/articleabstract/96/suppl_2/37/496 7095 National Research Council (2001). Nutrient requirements of dairy cattle (7nd ed. rev.). National Academy of Science. DOI: https://doi.org/10.1093/jas/sky073.070
Orskov, E. R., & McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, 92(2), 499-503. doi: 10.1017/ S0021859600063048 DOI: https://doi.org/10.1017/S0021859600063048
Peretti, J., Henrique, D. S., Mayer, L. R. R., Militão, E. R., Schimitz, R., Boger, D. T., & Rösler, J. A. (2017). Chemical composition and ruminal degradability of white oat (“Avena sativa ” L.) cv. IPR126 under different nitrogen levels. Revista Brasileira de Saúde e Produção Animal, 18(1), 89-102. doi: 10.1590/S1519-99 402017000100009 DOI: https://doi.org/10.1590/s1519-99402017000100009
Peripolli, V., Prates, E. R., Barcellos, J. O. J., McManus, C. M., Wilbert, C. A., Braccini, J., Neto, Camargo, C. M., & Lopes, R. B. (2014). Models for gas production adjustment in ruminant diets containing crude glycerol. Livestock Research for Rural Development, 26(2), 28-35. http://www.lrrd.org/lrrd26/2/peri26028. htm
R Development Core Team (2021). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.rproject.org
Santos, A. L. P., Brito, C. C. R. de, Moreira, G. R., Gomes-Silva, F., Cunha, M., Fº., Costa, M. L. da, Costa, M. L. L. da, Leite, L. A., Reis, R. B., Pimental, P. G., & Figueiredo, M. R. de. (2020). New model of evaluation of sunflower and corn silages by the in vitro gas production technique. Semina: Ciências Agrárias, 41(4), 1373-1384. doi: 10.5433/1679-0359.2020v41n4p1373 DOI: https://doi.org/10.5433/1679-0359.2020v41n4p1373
Santos, A. L. P., Moreira, G. R., Silva, F. S. G., Brito, C. C. R., Costa, M. L. L., Pereira, L. G. R., Mauricio, R. M., Azevedo, J. A. G., Pereira, J. M., Ferreira, A. L., & Cunha, M., Fº. (2019). Generation of models from existing models composition: An application to agrarian sciences. PloS One, 14(12), e0214778. doi: 10.1371/ journal.pone.0214778 DOI: https://doi.org/10.1371/journal.pone.0214778
Santos, A. L. P., Silva, F. S. G. da, Moreira, G. R., Brito, C. C. R. de, Costa, M. L. L. da, Cunha, M., Fº., Saliba, E. O. S., Oliveira, M. C. de, & Gonçalves, N. C. (2021). Proposals of non-linear models to adjust in vitro gas production at different incubation times in cassava genotypes. Ciência e Natura, 43(02), e22. https://orcid.org/0000-00 02-7703-2102 DOI: https://doi.org/10.5902/2179460X39962
Schofield, P., Pitt, R., & Pell, A. (1994). Kinetics of fiber digestion from in vitro gas production. Journal of Animal Science, 72(11), 2980-2991. doi: 10.25 27/1994.72112980x DOI: https://doi.org/10.2527/1994.72112980x
Sniffen, C. J., O’Connor, J. D., Van Soest, P. J., Fox, D. G., & Russel, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, 70(11), 3562-3577. doi: 10.2527/1992.70113562x DOI: https://doi.org/10.2527/1992.70113562x
Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B., & France, J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feed. Animal Feed Science and Technology, 48(3-4), 185-197. doi: 10.1016/0377- 8401(94)90171-6 DOI: https://doi.org/10.1016/0377-8401(94)90171-6
Velho, J. P., Mühlbach, P. R. F., Genro, T. C. M., Barcellos, J. O. J., Braccini, J., Neto, & Silva, R. S. M. da. (2014). Mathematical models for adjustment of in vitro gas production at different incubation times and kinetics of corn silages. Semina: Ciências Agrárias, 35(4 Supl.), 2531-2540. doi: 10.5433/1679-0359.2014v35n4 Suplp2531 DOI: https://doi.org/10.5433/1679-0359.2014v35n4Suplp2531
Veira, D. A. (2018). Estudo da dinâmica da cinética de produção de gases in vitro para diferentes tipos de alimentos. Tese de doutorado, Programa de PósGraduação em Zootecnia, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rio Verde, GO, Brasil.
Wang, M., Tang, S. X., & Tan, Z. L. (2011). Modeling in vitro gas production kinetics: derivation of logistic-exponential equations and comparison of models. Animal Feed Science and Technology, 165(3-4), 137-150. doi: 10.1016/j. anifeedsci.2010.09.016 DOI: https://doi.org/10.1016/j.anifeedsci.2010.09.016
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Semina: Ciências Agrárias
![Creative Commons License](http://i.creativecommons.org/l/by-nc/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.