Influência da glicinabetaína aplicada via foliar no crescimento, rendimento e alguns atributos fisiológicos e bioquímicos essenciais da uva (Vitis vinifera L.)

Autores

DOI:

https://doi.org/10.5433/1679-0359.2021v42n6p3201

Palavras-chave:

Teores de clorofila, Área foliar, Pulverização foliar, Fotossíntese, Sais solúveis totais.

Resumo

A glicina betaína (GB) desempenha um papel fundamental para mitigar o impacto oposto de vários estresses ambientais em várias culturas agrícolas. O objetivo desta pesquisa foi examinar a resposta da uva (Vitis vinifera L.) à aplicação foliar de GB. Diversos níveis de GB (0, 10, 20 e 30 mM) foram aplicados três vezes com intervalo de 15 dias à videira cv. King’s Ruby. Todos os níveis de GB melhoraram os atributos fisiológicos, bioquímicos e de crescimento da uva. Em comparação ao tratamento controle, a pulverização foliar de GB aplicada à 30 mM aumentou o número de folhas / videira, área foliar e número de ramos / planta recém-emergidos em 20,55%, 12,28% e 48,13%, respectivamente. O pH do suco de uva diminuiu com o aumento dos níveis de GB. No entanto, sólidos solúveis totais, conteúdo de clorofila total, rendimento de uva e taxa de fotossíntese foram registrados no máximo com pulverização foliar de GB aplicada a 30 mM. O modelo de regressão previu que cada incremento no nível de GB aumentava o número de folhas / planta e o número de ramos / planta recém-emergidos em 1,8 e 0,7, respectivamente. Assim, conclui-se que a aplicação exógena GB aplicada ` 30 mM pode ser mais útil para obter o crescimento e a qualidade ideais das uvas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Hasnain Waheed, College of Agriculture, University of Sargodha

Resracher, Assistant Prof. Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan.

Hafiz Muhammad Tayyab Khan, College of Agriculture, University of Sargodha

Resracher, Assistant Prof. Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha, Pakistan.

Muhammad Mansoor Javaid, College of Agriculture, University of Sargodha

Resracher, Assistant Prof. Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan.

Rashad Mukhtar Balal, College of Agriculture, University of Sargodha

Resracher, Assistant Prof. Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha, Pakistan.

Muhammad Adnan Shahid, University of New Hampshire

Associate Prof. Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham, USA.

Mubashar Nadeem, College of Agriculture, University of Sargodha

Resracher, Assistant Prof. Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan.

Bilal Ahmad Khan, College of Agriculture, University of Sargodha

Resracher, Assistant Prof. Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan.

Muhammad Mohsin Amin, College of Agriculture, University of Sargodha

Resracher, Assistant Prof. Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan.

Referências

Adak, N. (2019). Effects of glycine betaine concentrations on the agronomic characteristics of strawberry grown under deficit irrigation conditions. Applied Ecology and Environmental Research, 17(2), 3753-3767. doi: 10.15666/aeer/1702_37533767

Agboma, P., Peltonen-Sainio, P., Hinkkanen, R., & Pehu, E. (1997). Effect of foliar application of glycine betaine on yield components of drought stressed tobacco plants. Experimental Agriculture, 33(3), 345-352. doi: 10.1017/S0014479797003062

Arfan, M., Athar, H. R., & Ashraf, M. (2007). Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? Journal of Plant Physiology, 164(6), 685-694. doi: 10.1016/j.jplph.2006.05. 010

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. doi: 10.1104/pp.24.1.1

Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi: 10.1016/j.envexpbot.2005.12. 006

Athar, H., Zafar, Z., & Ashraf, M. (2015). Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators. Journal of Agronomy and Crop Science, 201(6), 428-442. doi: 10.1111/jac.12120

Bharwana, S. A., Ali, S., Farooq, M. A., Iqbal, N., Hameed, A., Abbas, F., & Ahmad, M. S. A. (2014). Glycine betaine-induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Turkish Journal of Botany, 38(2), 281-292. doi: 10.3906/bot-1304-65

Bhatti, K. H., Anwar, S., Nawaz, K., Hussain, K., Siddiqi, E. H., Sharif, R. U.,… Khalid, A. (2013). Effect of exogenous application of glycinebetaine on wheat (Triticum aestivum L.) under heavy metal stress. Middle-East Journal of Science Research, 14(1), 130-137. doi: 10.5829/idosi.mejsr.2013.14.1.19550

Blunden, G., Jenkins, T., & Liu, Y. (1996). Enhanced leaf chlorophyll levels in plants treated with seaweed extract. Journal of Applied Phycology, 8(6), 535-543. doi: 10.1007/BF02186333

Cairns, A., Watson, M., Creanor, S., & Foye, R. (2002). The pH and titratable acidity of a range of diluting drinks and their potential effect on dental erosion. Journal of Dentist, 30(7-8), 313-317. doi: 10.1016/ S0300-5712(02)00044-1

Chen, T. H., & Murata, N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in Plant Science, 13(9), 499-505. doi: 10.1016/j.tplants.2008.06.007

Chen, T. H., & Murata, N. (2011). Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant, Cell & Environment, 34(1), 1-20. doi: 10.1111/j.1365-3040.2010. 02232.x

Cuin, T. A., & Shabala, S. (2007). Compatible solutes reduce ROS induced potassium efflux in Arabidopsis roots. Plant, Cell & Environment, 30(7), 875-885. doi: 10.1111/j.1365-3040.2007.01674.x

Duman, F., Aksoy, A., Aydin, Z., & Temizgul, R. (2011). Effects of exogenous glycinebetaine and trehalose on cadmium accumulation and biological responses of an aquatic plant (Lemna gibba L.). Water, Air, & Soil Pollution, 217(1), 545-556. doi: 10.1007/s11270-010-0608-5

Farooq, M., Aziz, T., Hussain, M., Rehman, H., Jabran, K., & Khan, M. B. (2008). Glycinebetaine improves chilling tolerance in hybrid maize. Journal of Agronomy and Crop Science, 194(2), 152-160. doi: 10.11 11/j.1439-037X.2008.00295.x

Farooq, M., Wahid, A., Ito, O., Lee, D. J., & Siddique, K. H. M. (2009). Advances in drought resistance of rice. Critical Reviews in Plant Science, 28(4), 199-217. doi: 10.1080/07352680902952173

Ferrandino, A., & Lovisolo, C. (2013). Abiotic stress effects on grapevine (Vitis vinifera L.): focus on abscisicacid-mediated consequences on secondary metabolism and berry quality. Environmental and Experimental Botany, 103(1), 138-147. doi: 10.1016/j.envexpbot.2013.10.012

Gadallah, M. M. A. (1999). Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biologia Plantarum, 42(2), 249-257. doi: 10.1023/A:1002164719609

Giri, J. (2011). Glycinebetaine and abiotic stress tolerance in plants. Plant Signaling & Behavior, 6(11), 1746-1751. doi: 10.4161/psb.6.11.17801

Grimplet, J., Wheatley, M. D., Jouira, H. B., Deluc, L. G., Cramer, G. R., & Cushman, J. C. (2009). Proteomic and selected metabolite analysis of grape berry tissues under well watered and water deficit stress conditions. Proteomics, 9(9), 2503-2528. doi: 10.1002/pmic.200800158

Habib, N., Ashraf, M., Ali, Q., & Perveen, R. (2012). Response of salt stressed okra (Abelmoschus esculentus Moench) plants to foliar-applied glycine betaine and glycine betaine containing sugarbeet extract. South African Journal of Botany, 83(1), 151-158. doi: 10.1016/j.sajb.2012.08.005

Hussain, M., Malik, M. A., Farooq, M., Ashraf, M. Y., & Cheema, M. A. (2008). Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. Journal of Agronomy and Crop Science, 194(3), 193-199. doi: 10.1111/j.1439-037X.2008.00305.x

Khan, S. (2019). Climate classification of Pakistan. International Journal of Economic and Environmental Geology, 10(2), 60-71. Retrived from https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q= Climate+classification+of+Pakistan&btnG=

Kumar, V., Shriram, V., Hoque, T. S., Hasan, M. M., Burritt, D. J., & Hossain, M. A. (2017). Glycinebetaine-mediated abiotic oxidative-stress tolerance in plants: physiological and biochemical mechanisms. Stress Signaling in Plants: Genomics and Proteomics Perspective, 2(2), 111-133. doi: 10. 1007/978-3-319-42183-4_5

Li, R.-H., Guo, P.-G., Michael, B., Stefania, G., & Salvatore, C. (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultral Sciences in China, 5(10), 751-757. doi: 10.1016/S1671-2927(06)60120-X

Long, S. P., & Bernacchi, C. (2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54(392), 2393-2401. doi: 10.1093/jxb/erg262

Mahouachi, J., Argamasilla, R., & Gómez-Cadenas, A. (2012). Influence of exogenous glycine betaine and abscisic acid on papaya in responses to water-deficit stress. Journal of Plant Growth Regulation, 31(1), 1-10. doi: 10.1007/s00344-011-9214-z

Mäkelä, P., Munns, R., Colmer, T. D., Condon, A. G., & Peltonen-Sainio, P. (1998). Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt-or drought-stressed tomato. Functional Plant Biology, 25(6), 655-663. doi: 10.1071/PP9 8024

Malik, S., & Ashraf, M. (2012). Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticum aestivum L.) under drought. Soil and Environment, 31(1), 72-77.

Manivannan, P., Rabert, G. A., Rajasekar, M., & Somasundaram, R. (2015). Drought stress induced modification on growth and Pigments composition in different genotypes of (Helianthus annuus L.). Current Botany, 5(1), 7-13. Retrieved from http://scienceflora.org/journals/index.php/jp/

Mickelbart, M. V., Chapman, P., & Collier-Christian, L. (2006). Endogenous levels and exogenous application of glycinebetaine to grapevines. Scientia Horticulturae, 111(1), 7-16. doi: 10.1016/j.scienta. 2006.07.031

O’Neal, M. E., Landis, D. A., & Isaacs, R. (2002). An inexpensive, accurate method for measuring leaf area and defoliation through digital image analysis. Journal of Economic Entomology, 95(6), 1190-1194. doi: 10.1603/0022-0493-95.6.1190

Park, E. J., Jeknic, Z., & Chen, T. H. (2006). Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant and Cell Physiology, 47(6), 706-714. doi: 10.1093/pcp/pcj041

Pireivatlou, A. S., Aliyev, R., Hajieva, S., Javadova, S., & Akparov, Z. (2008). Structural changes of the photosynthetic apparatus; morphological and cultivation responses in different wheat genotypes under drought stress condition. Abstract of the International Wheat Genetics Symposium, Bako, Republic of Azerbaijan, 11.

Rehman, K. U., Haq, F. U., Amin, J., Shah, A., Khan, U., & Nabi, G. (2018). Grapes characterization of different varieties in the central zone of peshawar kpk. International Journal of Environmental Sciences & Natural Resources, 9(1), 26-29. doi: 10.19080/IJESNR.2018.08.555754

Rezaei, M. A., Jokar, I., Ghorbanli, M., Kaviani, B., & Kharabian-Masouleh, A. (2012). Morpho-physiological improving effects of exogenous glycine betaine on tomato (Lycopersicum esculentum Mill.) cv. PS under drought stress conditions. Plant Omics Journal, 5(2), 79-86. doi: 10.3316/informit. 183039918874309

Saleem, B. A., Malik, A. U., & Farooq, M. (2007). Effect of exogenous growth regulators application on June fruit drop and fruit quality in Citrus sinensis cv. Blood red. Pakistan. Journal of Agricultural Sciences, 44(2), 1-6.

Shahbaz, M., Masood, Y., Perveen, S., & Ashraf, M. (2012). Is foliar-applied glycinebetaine effective in mitigating the adverse effects of drought stress on wheat (Triticum aestivum L.)? Journal of Applied Botany and Food Quality, 84(2), 192-199.

Sorwong, A., & Sakhonwasee, S. (2015). Foliar application of glycine betaine mitigates the effect of heat stress in three marigold (Tagetes erecta) cultivars. The Horticulture Journal, 84(2), 161-171. doi: 10. 2503/hortj.MI-038

Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures of statistics. A biometrical approach (3nd ed.). Singapore City, Singapore: McGraw Hill Book.

Yang, W. J., Rich, P. J., Aztell, J. D., Wood, K. V., & Bonham, C. C. (2003). Genotypic variation for glycinebetaine in sorghum. Crop Science, 43(1), 162-169. doi: 10.2135/cropsci2003.1620

Zhang, Y., Mechlin, T., & Dami, I. (2011). Foliar application of abscisic acid induces dormancy responses in greenhouse-grown grapevines. Horticulture Science, 46(9), 1271-1277. doi: 10.21273/HORTSCI.46.9. 1271a

Downloads

Publicado

2021-08-12

Como Citar

Waheed, H., Khan, H. M. T., Javaid, M. M., Balal, R. M., Shahid, M. A., Nadeem, M., … Amin, M. M. (2021). Influência da glicinabetaína aplicada via foliar no crescimento, rendimento e alguns atributos fisiológicos e bioquímicos essenciais da uva (Vitis vinifera L.). Semina: Ciências Agrárias, 42(6), 3201–3218. https://doi.org/10.5433/1679-0359.2021v42n6p3201

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

1 2 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.