Effect of synbiotics on performance and gut health in broiler chickens submitted to an enteric challenge

Authors

DOI:

https://doi.org/10.5433/1679-0359.2024v45n5p1367

Keywords:

Performance enhancers, Microbiome, Synbiotics.

Abstract

The aim of this study was to assess the effects of a nutritional program free of performance enhancers when compared to a program using synbiotics, in both enteric challenge and non-challenge conditions, on the intestinal health and performance of broiler chickens. A total of 864 one-day-old male Cobb broiler chicks were used. The birds were distributed in a completely randomized design, using a 2 × 2 factorial scheme (2 diets × 2 health conditions), resulting in 4 diets with 12 replications of 18 birds per cage, totaling 48 experimental units. The diets used were control diet (Diet A); control diet + synbiotic (Diet B); Diet A + enteric challenge; and Diet B + enteric challenge. At 14 days old, an enteric challenge was applied with a commercial coccidiosis vaccine (20 times the manufacturer's recommended dose), followed by inoculation with Escherichia coli (ATCC® 8739™). The enteric challenge resulted in worse performance in all the phases assessed and changed the intestinal mucosa morphology five days after the challenge. At 28 days old, two weeks after the enteric challenge, a regenerative process was already occurring. Supplementation with synbiotics improved the feed conversion of the 28-day-old birds, regardless of the experimental challenge. Synbiotic supplementation resulted in greater tensile strength, hardness, and elasticity of the jejunal mucosa. These results indicate that it is possible to improve productivity using alternative additives, even in experimental environments where variables are controlled and free from challenges that compromise animal welfare and health.

Author Biographies

Alisson Gustavo Rotter, Universidade Federal do Paraná

Master’s Student, Postgraduate Program in Animal Science, Universidade Federal do Paraná, UFPR, Palotina, PR, Brazil.

Bruna Cereda de Oliveira da Rosa, Universidade Federal do Paraná

Master’s Student, Postgraduate Program in Animal Science, Universidade Federal do Paraná, UFPR, Palotina, PR, Brazil.

Ana Paula Müller Fernandes, Universidade Federal do Paraná

Undergraduate Student in Veterinary Medicine, UFPR, Palotina, PR, Brazil.

Eduarda Pires Simões, Universidade Federal do Paraná

Undergraduate Student in Veterinary Medicine, UFPR, Palotina, PR, Brazil.

André Natã Pinto, Universidade Federal do Paraná

Undergraduate Student in Veterinary Medicine, UFPR, Palotina, PR, Brazil.

Anderson Reuter, Universidade Federal do Paraná

Undergraduate Student in Veterinary Medicine, UFPR, Palotina, PR, Brazil.

Lucas Pedro de Souza Glaser, Universidade Federal do Paraná

Undergraduate Student in Veterinary Medicine, UFPR, Palotina, PR, Brazil.

Jovanir Inês Müller Fernandes, Universidade Federal do Paraná

Prof., Postgraduate Program in Animal Science, UFPR, Palotina, PR, Brazil.

References

Aleixo, V. M., Pressinoiti, L. N., Campos, D. V. S., & Menezes-Aleixo, R. C. (2011). Histologia, histoquímica e histometria do intestino de jacaré-do-Pantanal criado em cativeiro. Pesquisa Veterinária Brasileira, 31(12), 1120-1128. doi: 10.1590/S0100-736X2011001200014

Associação Brasileira de Proteína Animal (2021). Relatório anual ABPA 2021. ABPA. http://abpa-br.org/mercados/#relatorios.

Ciurescu, G., Dumitru, M., Gheorghe, A., Untea, A. E., & Drahici, R. (2020). Effect of Bacillus subtilis on growth performance, bone mineralization, and bacterial population of broilers fed with different protein sources. Poultry Science, 99(11), 5960-5971. doi: 10.1016/j.psj.2020.08.07

Clavijo, V., & Florez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: a review. Poultry Science, 97(3), 1006-1021. doi: 10.3382/ps/pex359

El-Sawah, A. A., Dahshirasn, A. L. H., El-Nahass, E., & El-Mawgoud, A. E. (2018). Pathogenicity of Escherichia coli O157 in commercial broiler chickens. Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 620-625. doi: 10.1016/j.bjbas.2018.07.005

Gadde, U. D., Oh, S., Lillehoj, H. S., & Lillehoj, E. P. (2018). Antibiotic growth promoters virginiamycin and bacitracin methylene disalicylate alter the chicken intestinal metabolome. Scientific Reports, 8(1), 3592. doi: 10.1038/s41598-018-22004-60

Gottardo, E. T., Prokoski, K., Hord, D., Viott, A. D., Santos, T. C., & Fernandes, J. I. M. (2016). Regeneration of the intestinal mucosa in Eimeria and E. coli challenged broilers suplemented with amino acids. Poultry Science, 95(5), 1056-1065. doi: 10.3382/ps/pev356

He, X., Lu, Z., Ma, B., Zhang, L., Li, J., Jiang, Y., Li, J., Jiang, Y., Zhou, G. H., & Gao, F. (2018). Effects of chronic heat exposure on growth performance, intestinal epithelial histology, appetite-related hormones and genes expression in broilers. Journal Science Food and Agriculture, 98(12), 4471-4478. doi: 10.1002/jsfa.8971

Hmani, H., Daoud, L., Jlidi, M., Jalleli, K., Ali, M. B., Brahim, A. H., Bargui, M., & Dammak, A. (2017). A Bacillus subtilis strain as probiotic in poultry: selection based on in vitro functional properties and enzymatic potentialities. Journal of Industrial Microbiology and Biotechnology, 44(8), 1157-1166. doi: 10.1007/s10295-017-1944-x

Hofacre, C. L., Reynolds, D., Mathis, G., Bretts, L., Ollis, N., & Smith, J. (2019). Effect of a competitive exclusion culture in a necrotic enteritis challenge model in broilers. Journal of Applied Poultry Research, 28(2), 350-355. doi: 10.3382/japr/pfy078

Iseri, V. J., & Klasing, K. C. (2014). Changes in the amount of lysine in protective proteins and immune cells after a systemic response to dead Escherichia coli: implications for the nutritional costs of immunity. Integrative and Comparative Biology, 54(5), 922-930. doi: 10.1093/icb/icu111

Keerqin, C., Morgan, N., Wu, S. B., Swick, R. A., & Choct, M. (2017). Dietary inclusion of arabinoxylo- oligosaccharides in response to broilers challenged with subclinical necrotic enteritis. British Poultry Science, 58(4), 418-424. doi: 10.1080/00071668.2017.1327705

Kisielinski, K., Willis, S., & Prescher, A. (2002). A simple new method to calculate small intestine absorptive surface in the rat. Clinical and Experimental Medicine, 2(3), 131-135. doi: 10.1007/s102380200018

Leite, P. R. S. C., Oliveira, H. B., Souza, V. B. L., Rocha, F. O., & Oliveira, T. H. (2020). Probiotic and synbiotic in broiler diet: performance and Enterobacteriaceae. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 72(6), 2365-2372. doi: 10.1590/1678-4162-12035

Lekshmi, M., Ammini, P., Kumar, S., & Varela M. F. (2017). The food production environment and the development of antimicrobial resistance in human pathogens of animal origin. Microorganisms, 5(11), 1-15. doi: 10.3390/microorganisms5010011

Ma, Y., Wang, W., Zhang, H., Wang, J., Zhang, W., Gao, J., Wu, S., & Qi, G. (2018). Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Scientific Reports, 8(1), 15358. doi: 10.1038/s41598-018-33762-8

Markowiak, P., & Slizewska, K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 10(21), 1-20. doi: 10.1186/s13099-018-0250-0

Morales-Barrera, E., Calhoun, N., Lobato-Tapia, J. L., Lucca, V., & Prado-Rebolledo, O. (2016). Risks involved in the use of enrofloxacin for Salmonella enteritidis or Salmonella heidelberg in commercial. Frontiers in Veterinary Science, 31(3), 1-7. doi: 10.3389/fvets.2016.00072

Nakphaichit, M., Thanomwongwattana, S., Phraephaisarn, C., Sakamoto, N., Keawsompong, S., Nakayama, J., & Nitisinprasert, S. (2011). The effect of including Lactobacillus reuteri KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens. Poultry Science, 90(12), 2753-2765. doi: 10.3382/ps.2011-01637

Ohland, C. L., & MacNaughton, W. K. (2010). Probiotic bacteria and intestinal epitelial barrier function. American Journal of Physiology-Gastrointestinal and Liver Physiology, 298(6), 807-819. doi: 10.1152/ajpgi.00243.2009

Paiva, D., & Mcelroy, A. (2014). Necrotic enteritis: applications for the poultry industry. Journal of Applied Poultry Research, 23(3), 557-566. doi: 10.3382/japr.2013-00925

Pourabedin, M., Guan, L., & Zhao, X. (2015). Xylo-oligosaccharides and virginiamycin differentially modulate gut microbial composition in chickens. Microbiome, 3(15), 1-12. doi: 10.1186/s40168-015-0079-4

Rodrigues, F. A. P., Medeiros, P. H. Q. S., Prata, M. M. G., & Lima, A. A. M. (2016). Fisiologia da barreira epitelial intestinal. In R. B. Oriá, & G. A. C. Brito (Orgs.), Sistema digestório: integração básico-clínica (Cap 18, pp. 441-477). São Paulo.

Rostagno, H. S., Albino, L. F. T., Hannas, M. I., Donzele, J. L., Sakomura, N. K., Perazzo, F. G., Saraiva, A., Teixeira, M. L., Rodrigues, P. B., Oliveira, R. F., Barreto, S. L. T., & Brito, C. O. (2017). Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais. Universidade Federal de Viçosa.

Schafer, K. A. (1998). The cell cycle: a review. Veterinary Pathology, 35(6), 461-478. doi: 10.1177/030098589803500601

Statistical Analysis System Institute (2002). System for Microsoft Windows, Release 9.2. SAS Institute Inc.

Uni, Z., Platin, R., & Sklan, D. (1998). Cell proliferation in chicken intestinal epithelium occurs both in the crypt and along the villus. Journal of Comparative Physiology B, 168(4), 241-247. doi: 10.1007/s003600142

Wang, G., Huang, S., Wang, Y., Cai, S., Yu, H., Liu, H., Zeng, X., Zhang, G., & Qiao, S. (2019) Bridging intestinal immunity and gut microbiota by metabolites. Cellular and Molecular Life Sciences, 76(20), 3917-3937. doi: 10.1007/s00018-019-03190-6

Wang, H., Ni, X., Qing, X., Liu, L., Lai, J., Khalique, A., Li, G., Pan, K., Jing, B., & Zeng, D. (2017). Probiotic enhanced intestinal immunity in broilers against subclinical necrotic enteritis. Frontiers in Immunology, 8(20), 1592. doi: 10.3389/fimmu.2017.01592

Whelan, R. A., Doranalli, K., Rinttilä, T., Vienola, K., Jurgens, G., & Apajalahti, J. (2018). The impact of Bacillus subtilis DSM 32315 on the pathology, performance, and intestinal microbiome of broiler chickens in a necrotic enteritis challenge. Poultry Science, 98(9), 3450-3463. doi: 10.3382/ps/pey500

Zommiti, M., Chikindas, M. L., & Ferchichi, M. (2020). Probiotics live biotherapeutics: a story of success, limitations, and future prospects not only for humans. Probiotics and Antimicrobial Proteins, 12(3), 1266-1289. doi: 10.1007/s12602-019-09570-5

Downloads

Published

2024-08-19

How to Cite

Rotter, A. G., Rosa, B. C. de O. da, Fernandes, A. P. M., Simões, E. P., Pinto, A. N., Reuter, A., … Fernandes, J. I. M. (2024). Effect of synbiotics on performance and gut health in broiler chickens submitted to an enteric challenge. Semina: Ciências Agrárias, 45(5), 1367–1390. https://doi.org/10.5433/1679-0359.2024v45n5p1367

Issue

Section

Articles

Most read articles by the same author(s)