Presence of antibiotic-resistant bacteria in pigs for consumption - one health challenge - Literature review

Authors

DOI:

https://doi.org/10.5433/1679-0359.2022v43n6p2823

Keywords:

Bacterial resistance, One health, Staphylococcus spp., Pig farming.

Abstract

Pig farming is an area of livestock that has been developing the most in Brazil and the world, with production increasing every year, generating jobs, and being of great importance for the Brazilian economy. In swine production, great health enables these animals to reach their highest point of development and antimicrobials are used, either prophylactically or through food, as growth promoters. Within swine culture, there is a concern regarding antibiotic-resistant bacteria; however, Staphylococcus spp. do not receive the necessary prominence in research, since the pathologies caused by them do not tend to cause great economic losses. Therefore, this review aimed to highlight the importance of bacterial resistance within breeding stock, its possible origins, the importance of Staphylococcus spp. within this topic, and its evolution in swine farming over the years. For this, studies were selected, with an emphasis on information such as country, number of samples, presence of Staphylococcus spp. resistant to methicillin, breeding phase, and phenotypic and molecular tests. In addition, publications were selected that show the importance of understanding the biological and resistance profiles of Staphylococcus spp. in swine herds in Brazil and around the world.

Downloads

Download data is not yet available.

Author Biographies

Isabela Carvalho dos Santos, Universidade Paranaense

Student in the Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, UNIPAR, Umuarama, PR, Brazil. 

Lidiane Nunes Barbosa, Universidade Paranaense

Profa. in the Postgraduate Program in Animal Science with Emphasis on Bioactive Products, UNIPAR, Umuarama, PR, Brazil.

Lisiane de Almeida Martins, Faculdade de Ensino Superior Santa Bárbara

Profa of the Graduate Course in Veterinary Medicine, Faculdade de Ensino Superior Santa Bárbara, FAESB, Tatuí, SP, Brazil.

Laisa Marina Rosa Rey, Universidade Paranaense

Student in the Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, UNIPAR, Umuarama, PR, Brazil.

Kawany Gabrieli Zanetti Fazoli, Universidade Paranaense

Aluna do Programa de Pós-Graduação em Zootecnia com Ênfase em Produtos Bioativos, Universidade Paranaense, UNIPAR, Umuarama, PR, Brasil.

Lucas Lima da Silva, Universidade Paranaense

Autonomous Veterinary Doctor, Umuarama, PR, Brazil.

Larissa Rafaela de Paula Ferreira, Universidade Paranaense

Student of the Professional Master's Degree in Medicinal Plants and Herbal Medicines in Primary Care, UNIPAR, Umuarama, PR, Brazil.

Ulisses de Pádua Pereira, Universidade Estadual de Londrina

Prof. Dr. in the Graduate Program in Animal Science, Universidade Estadual de Londrina, UEL, Londrina, PR, Brazil.

Daniela Dib Gonçalves, Universidade Paranaense

Profa in the Postgraduate Program in Animal Science with Emphasis on Bioactive Products, UNIPAR, Umuarama, PR, Brazil.

References

Aarestrup, F. (2012). Get pigs off antibiotics. Nature, 486(2012), 465-466. doi: 10.1038/486465a DOI: https://doi.org/10.1038/486465a

Aarestrup, F. M., Duran, C. O., & Burch, D. G. S. (2008). Antimicrobial resistance in swine production. Animal Health Research Reviews, 9(2), 135-148. doi: 10.1017/S1466252308001503 DOI: https://doi.org/10.1017/S1466252308001503

Aguilar, C. E. G., Baraldi, T. G., Santos, A. C. R. dos, Nascimento, K. A., Oliveira, M. E. F., & Oliveira, L. G. de. (2015). Implementação e avaliação das práticas de biosseguridade na produção de suínos. Uma revisão. Revista Brasileira de Higiene e Sanidade Animal, 9(2), 320-333. http://www.higieneanimal.ufc.br/seer/index.php/higieneanimal/article/view/244 DOI: https://doi.org/10.5935/1981-2965.20150031

Alvim, M. (2020). Uso desenfreado de antibióticos na pandemia pode levar a 'apagão' contra bactérias resistentes. https://www.bbc.com/portuguese/geral-54532598

Anelli, A. (2018). Censo agropecuário: número de granjas de suínos cai, mas abates aumentam. https://www.canalrural.com.br/programas/informacao/rural-noticias/censo-numero-de-granjas-de-suinocultura/

Angen, Ø., Nielsen, M. W., Løfstrøm, P., Larsen, A. R., & Hendriksen, N. B. (2021). Airborne spread of methicillin resistant Staphylococcus aureus from a swine farm. Frontiers in Veterinary Science, 8, 644729. doi: 10.3389/fvets.2021.644729 DOI: https://doi.org/10.3389/fvets.2021.644729

Antonio, N. D. S., Oliveira, A. C., Canesini, R., Rocha, J. R., & Pereira, R. E. P. (2009). Mecanismos de resistência bacteriana. Revista Científica Eletrônica de Medicina Veterinária, 200(2), 4-8.

Argudín, M., Deplano, A., Meghraoui, A., Dodémont, M., Heinrichs, A., Denis, O., Nonhoff, C., & Roisin, S. (2017). Bacteria from animals as a pool of antimicrobial resistance genes. Antibiotics, 6(2), 12-50. doi: 10.3390/antibiotics6020012 DOI: https://doi.org/10.3390/antibiotics6020012

Armand-Lefevre, L., Ruimy, R., & Andremont, A. (2005). Clonal comparison of Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs. Emerging Infectious Diseases, 11(5), 711-714. doi: 10.3201/eid1105.040866 DOI: https://doi.org/10.3201/eid1105.040866

Associação Brasileira de Proteína Animal (2021). Relatório anual 2021. ABPA.

Atyah, M. A. S., Zamri-Saad, M., & Siti-Zahrah, A. (2010). First report of methicillin-resistant Staphylococcus aureus from cage-cultured tilapia (Oreochromis niloticus). Veterinary Microbiology, 144(3-4), 502-504. doi: 10.1016/j.vetmic.2010.02.004 DOI: https://doi.org/10.1016/j.vetmic.2010.02.004

Azevedo, P. F., & Bankuti, F. I. (2001). Na clandestinidade: o mercado informal de carne bovina. In International conference on agri-food chain/networks economics and management (Vol. 3, pp. 1-12). Ribeirão Preto.

Back, S. H., Eom, H. S., Lee, H. H., Lee, G. Y., Park, K. T., & Yang, S. J. (2020). Livestock-associated methicillin-resistant Staphylococcus aureus in Korea: antimicrobial resistance and molecular characteristics of LA-MRSA strains isolated from pigs, pig farmers, and farm environment. Journal of Veterinary Science, 21(1), e2. doi: 10.4142/jvs.2020.21.e2 DOI: https://doi.org/10.4142/jvs.2020.21.e2

Banin, E., Hughes, D., & Kuipers, O. P. (2017). Bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiology Reviews, 41(3), 450-452. doi: 10.1093/femsre/fux016 DOI: https://doi.org/10.1093/femsre/fux016

Bassi, N. S. S. (2021). Demandas atuais e futuras da cadeia produtiva de suínos. EMBRAPA. https://www.embrapa.br/documents/1355242/0/CIAS+-+Agropensa+-+Demandas+atuais+e+futuras+da+ cadeia+produtiva+de+su%C3%ADnos.pdf

Becker, K., Heilmann, C., & Peters, G. (2014). Coagulase-negative staphylococci. Clinical Microbiology Reviews, 27(4), 870-926. doi: 10.1128/CMR.00109-13 DOI: https://doi.org/10.1128/CMR.00109-13

Beier, R. C., Andrews, K., Poole, T. L., Harvey, R. B., Crippen, T. L., Anderson, R. C., & Nisbet, D. J. (2020). Interactions of organic acids with Staphylococcus aureus and MRSA strains from swine mandibular lymph node tissue, commercial pork sausage meat and feces. International Journal of Microbiology and Biotechnology, 5(4), 165-183. doi: 10.11648/j.ijmb.20200504.12 DOI: https://doi.org/10.11648/j.ijmb.20200504.12

Bhargava, K., & Zhang, Y. (2012). Multidrug‐resistant coagulase‐negative Staphylococci in food animals. Journal of Applied Microbiology, 113(5), 1027-1036. doi: 10.1111/j.1365-2672.2012.05410.x DOI: https://doi.org/10.1111/j.1365-2672.2012.05410.x

Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42-51. doi: 10.1038/nrmicro3380 DOI: https://doi.org/10.1038/nrmicro3380

Böll-Stiftung, H. (2021). Sales volume of antibiotics used for animal feed production in Brazil in 2013 and 2030. Statista Research Department. https://www.statista.com/statistics/975512/antibiotics-animal-feed-production-sales-volume-brazil/

Bonvegna, M., Grego, E., Sona, B., Stella, M. C., Nebbia, P., Mannelli, A., & Tomassone, L. (2021). Occurrence of methicillin-resistant coagulase-negative staphylococci (MRCoNS) and methicillin-resistant Staphylococcus aureus (MRSA) from pigs and farm environment in Northwestern Italy. Antibiotics, 10(6), 676-689. doi: 10.3390/antibiotics10060676 DOI: https://doi.org/10.3390/antibiotics10060676

Bouchami, O., Fraqueza, M. J., Faria, N. A., Alves, V., Lawal, O. U., Lencastre, H. de, & Miragaia, M. (2020). Evidence for the dissemination to humans of methicillin-resistant Staphylococcus aureus ST398 through the pork production chain: a study in a Portuguese slaughterhouse. Microorganisms, 8(12), 1892-1908. doi: 10.3390/microorganisms8121892 DOI: https://doi.org/10.3390/microorganisms8121892

Broom, L. J. (2017). The sub-inhibitory theory for antibiotic growth promoters. Poultry Science, 96(9), 3104-3108. doi: 10.3382/ps/pex114 DOI: https://doi.org/10.3382/ps/pex114

Brown, K., Uwiera, R. R., Kalmokoff, M. L., Brooks, S. P., & Inglis, G. D. (2017). Antimicrobial growth promoter use in livestock: a requirement to understand their modes of action to develop effective alternatives. International Journal of Antimicrobial Agents, 49(1), 12-24. doi: 10.1016/j.ijantimicag.2016.08.006 DOI: https://doi.org/10.1016/j.ijantimicag.2016.08.006

Buzón-Durán, L., Capita, R., & Alonso-Calleja, C. (2018). Antibiotic susceptibility of methicillin-resistant staphylococci (MRS) of food origin: a comparison of agar disc diffusion method and a commercially available miniaturized test. Food Microbiology, 72, 220-224. doi: 10.1016/j.fm.2017.11.018 DOI: https://doi.org/10.1016/j.fm.2017.11.018

Carlet, J., Jarlier, V., Harbarth, S., Voss, A., Goossens, H., & Pittet, D. (2012). Ready for a world without antibiotics? The pensières antibiotic resistance call to action. Antimicrobial Resistance and Infection Control, 1(1), 1-13. doi: 10.1186/2047-2994-1-11 DOI: https://doi.org/10.1186/2047-2994-1-11

Catry, B., Laevens, H., Devriese, L. A., Opsomer, G., & Kruif, A. de. (2003). Antimicrobial resistance in livestock. Journal of Veterinary Pharmacology and Therapeutics, 26(2), 81-93. doi: 10.1046/j.1365-2885.2003.00463.x DOI: https://doi.org/10.1046/j.1365-2885.2003.00463.x

Chanchaithong, P., Perreten, V., Am-In, N., Lugsomya, K., Tummaruk, P., & Prapasarakul, N. (2019). Molecular characterization and antimicrobial resistance of livestock-associated methicillin-resistant Staphylococcus aureus isolates from pigs and swine workers in Central Thailand. Microbial Drug Resistance, 25(9), 1382-1389. doi: 10.1089/mdr.2019.0011 DOI: https://doi.org/10.1089/mdr.2019.0011

Cheng, D., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Liu, Y., Wei, Q., & Wei, D. (2020). A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. Journal of Hazardous Materials, 387, 121682. doi: 10.1016/j.jhazmat.2019.121682Get DOI: https://doi.org/10.1016/j.jhazmat.2019.121682

Close, W. H. (2000). Producing pigs without antibiotic growth promoters. Advances in Pork Production, 11(1), 47-56.

Conceição, T., Lencastre, H. de, & Aires-de-Sousa, M. (2017). Frequent isolation of methicillin resistant Staphylococcus aureus (MRSA) ST398 among healthy pigs in Portugal. PLoS One, 12(4), e0175340. doi: 10.1371/journal.pone.0175340 DOI: https://doi.org/10.1371/journal.pone.0175340

Confederação da Agricultura e Pecuária do Brasil (2020). Pesquisa Pecuária Municipal (PPM) 2019: crescimento de todas as atividades englobadas na pesquisa em relação a 2018. (Comunicado Técnico). CAN.

Cromwell, G. L. (2002). Why and how antibiotics are used in swine production. Animal Biotechnology, 13(1), 7-27. DOI: https://doi.org/10.1081/ABIO-120005767

Cunha, M. L. R. S. (2017). Staphylococcus aureus: infections, treatment and risk assessment. Nova Biomedical.

Davies, P. R. (2012). One world, one health: the threat of emerging swine diseases. A North American perspective. Transboundary and Emerging Diseases, 59, 18-26. doi: 10.1111/j.1865-1682.2012.01312.x DOI: https://doi.org/10.1111/j.1865-1682.2012.01312.x

Del Fio, F. D. S., Mattos, T. R. de F., & Groppo, F. C. (2000). Resistência bacteriana. Revista Brasileira de Medicina, 57(10), 1129-1140.

DeLeo, F. R., Otto, M., Kreiswirth, B. N., & Chambers, H. F. (2010). Community-associated meticillin-resistant Staphylococcus aureus. The Lancet, 375(9725), 1557-1568. doi: 10.1016/S0140-6736(09)61999-1 DOI: https://doi.org/10.1016/S0140-6736(09)61999-1

Dierikx, C. M., Hengeveld, P. D., Veldman, K. T., Haan, A. de, van der Voorde, S., Dop, P. Y., Bosch, T., & van Duijkeren, E. (2016). Ten years later: still a high prevalence of MRSA in slaughter pigs despite a significant reduction in antimicrobial usage in pigs the Netherlands. Journal of Antimicrobial Chemotherapy, 71(9), 2414-2418. doi: 10.1093/jac/dkw190 DOI: https://doi.org/10.1093/jac/dkw190

Escudero, J. A. (2021). El problema de salud que causará 10 millones de muertes en 2050 si no lo remediamos. The Conversation. https://theconversation.com/el-problema-de-salud-que-causara-10-millones-de-muertes-en-2050-si-no-lo-remediamos-159555

Fluit, A. C. (2012). Livestock-associated Staphylococcus aureus. Clinical Microbiology and Infection, 18(8), 735-744. doi: 10.1111/j.1469-0691.2012.03846.x DOI: https://doi.org/10.1111/j.1469-0691.2012.03846.x

Food and Drug Administration (2021). Extralabel use background. Silver Spring - MD. https://www.fda.gov/animal-veterinary/antimicrobial-resistance/extralabel-use-and-antimicrobials

Foster, T. (1996). Staphylococcus. In S. Baron (Ed.), Medical microbiology (pp. 1-23). Galveston, TX: University of Texas Medical Branch at Galveston. https://www.ncbi.nlm.nih.gov/books/NBK8448/

Frana, T. S., Beahm, A. R., Hanson, B. M., Kinyon, J. M., Layman, L. L., Karriker, L. A., Ramirez, A., & Smith, T. C. (2013). Isolation and characterization of methicillin-resistant Staphylococcus aureus from pork farms and visiting veterinary students. PloS One, 8(1), e53738. doi: 10.1371/journal.pone.0053738 DOI: https://doi.org/10.1371/journal.pone.0053738

Freitas, J. D., Galindo, G. A., Santos, E. J., Kd, S., & Oliveira, J. P. D. (2001). Zoonotic brucellosis risk associated with clandestine slaughtered porks. Revista de Saúde Pública, 35(1), 101-102. doi: 10.1590/s0034-89102001000100015 DOI: https://doi.org/10.1590/S0034-89102001000100015

Galvão, M. R., Neto, & Nardi, G. de, Jr., (2016). Biosseguridade em granja suinícola e sua importância no Agronegócio. In Anais eletrônicos [Anais] 5ª Jornada Científica e Tecnológica da FATEC, Botucatu, São Paulo, Brasil.

Gheisar, M. M., & Kim, I. H. (2018). Phytobiotics in poultry and swine nutrition-a review. Italian Journal of Animal Science, 17(1), 92-99. doi: 10.1080/1828051X.2017.1350120 DOI: https://doi.org/10.1080/1828051X.2017.1350120

González-Martín, M., Corbera, J. A., Suárez-Bonnet, A., & Tejedor-Junco, M. T. (2020). Virulence factors in coagulase-positive staphylococci of veterinary interest other than Staphylococcus aureus. Veterinary Quarterly, 40(1), 118-131. doi: 10.1080/01652176.2020.1748253 DOI: https://doi.org/10.1080/01652176.2020.1748253

Grøntvedt, C. A., Elstrøm, P., Stegger, M., Skov, R. L., Skytt Andersen, P., Larssen, K. W., Åmdal, S., Løtvedt, S. M., Sunde, M., & Bjørnholt, J. V. (2016). Methicillin-resistant Staphylococcus aureus CC398 in humans and pigs in Norway: a “One Health” perspective on introduction and transmission. Clinical Infectious Diseases, 63(11), 1431-1438. doi: 10.1093/cid/ciw552 DOI: https://doi.org/10.1093/cid/ciw552

Guaraldo, M. C. (2021). Brasil é o quarto maior produtor de grãos e o maior exportador de carne bovina do mundo, diz estudo. EMBRAPA. https://www.embrapa.br/busca-de-noticias/-/noticia/62619259/brasil-e-o-quarto-maior-produtor-de-graos-e-o-maior-exportador-de-carne-bovina-do-mundo-diz-estudo.

Haulisah, N. A., Hassan, L., Bejo, S. K., Jajere, S. M., & Ahmad, N. I. (2021). High levels of antibiotic resistance in isolates from diseased livestock. Frontiers in Veterinary Science, 8, 300-312. doi: 10.3389/fvets.2021.652351 DOI: https://doi.org/10.3389/fvets.2021.652351

Instituto Brasileiro de Geografia e Estatística (2017). Censo agropecuário: resultados definitivos 2006/2017. https://censos.ibge.gov.br/agro/2017/templates/censo_agro/resultadosagro/pecuaria.html?localidade=0&tema=1

Instituto Brasileiro de Geografia e Estatística (2021a). Abate de bovinos cai e o de frangos e suínos cresce no 1º trimestre de 2021. Agência Notícias IBGE. https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/30871-abate-de-bovinos-cai-e-o-de-frangos-e-suinos-cresce-no-1-trimestre-de-2021

Instituto Brasileiro de Geografia e Estatística (2021b). Estatística da produção pecuária: primeiros resultados, jan.-mar. 2021. https://biblioteca.ibge.gov.br/visualizacao/periodicos/3087/epp_pr_2021_1tri.pdf

Ito, T., Kuwahara-Arai, K., Katayama, Y., Uehara, Y., Han, X., Kondo, Y., & Hiramatsu, K. (2014). Staphylococcal cassette chromosome mec (SCCmec) analysis of MRSA. Methicillin-resistant Staphylococcus Aureus (MRSA) Protocols, 2014(1085), 131-48. doi: 10.1007/978-1-62703-664-1_8 DOI: https://doi.org/10.1007/978-1-62703-664-1_8

Kalai, S., Roychoudhury, P., Dutta, T. K., Subudhi, P. K., Chakraborty, S., Barman, N. N., & Sen, A. (2021). Multidrug resistant staphylococci isolated from pigs with exudative epidermitis in North Eastern Region of India. Letters in Applied Microbiology, 72(5), 535-541. doi: 10.1111/lam.13448 DOI: https://doi.org/10.1111/lam.13448

Kawano, J., Shimizu, A., Saitoh, Y., Yagi, M., Saito, T., & Okamoto, R. (1996). Isolation of methicillin-resistant coagulase-negative staphylococci from chickens. Journal of Clinical Microbiology, 34(9), 2072-2077. doi: 10.1128/jcm.34.9.2072-2077.1996 DOI: https://doi.org/10.1128/jcm.34.9.2072-2077.1996

Kich, J. D., Marin, G. B., & Coldebella, A. (2021). Uso prudente de antimicrobianos na suinocultura: qual é o nosso caminho? Anais do Simpósio Brasil Sul de Suinocultura, Brasil Sul Pig Fair, On-Line, Chapecó, SC, Brasil, 13, 12.

Kittl, S., Brodard, I., Heim, D., Andina-Pfister, P., & Overesch, G. (2020). Methicillin-resistant Staphylococcus aureus strains in Swiss pigs and their relation to isolates from farmers and veterinarians. Applied and Environmental Microbiology, 86(5), e01865-19. doi: 10.1128/AEM.01865-19 DOI: https://doi.org/10.1128/AEM.01865-19

Kolář, M., Urbanek, K., & Látal, T. (2001). Antibiotic selective pressure and development of bacterial resistance. International Journal of Antimicrobial Agents, 17(5), 357-363. doi: 10.1016/S0924-8579(01)00317-X DOI: https://doi.org/10.1016/S0924-8579(01)00317-X

Krupa, P., Bystroń, J., Podkowik, M., Empel, J., Mroczkowska, A., & Bania, J. (2015). Population structure and oxacillin resistance of Staphylococcus aureus from pigs and pork meat in south-west of Poland. BioMed Research International, 2015, 141475. doi:10.1155/2015/141475 DOI: https://doi.org/10.1155/2015/141475

Kumar, D., Pornsukarom, S., Sivaraman, G. K., & Thakur, S. (2018). Environmental dissemination of multidrug methicillin-resistant Staphylococcus sciuri after application of manure from commercial swine production systems. Foodborne Pathogens and Disease, 15(4), 210-217. doi: 10.1089/fpd.2017.2354 DOI: https://doi.org/10.1089/fpd.2017.2354

Kumazawa, J., & Yagisawa, M. (2002). The history of antibiotics: the Japanese story. Journal of Infection and Chemotherapy, 8(2), 125-133. doi: 10.1007/s101560200022 DOI: https://doi.org/10.1007/s101560200022

Lakhundi, S., & Zhang, K. (2018). Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clinical Microbiology Reviews, 31(4), e00020-18. doi: 10.1128/CMR.00020-18 DOI: https://doi.org/10.1128/CMR.00020-18

Landers, T. F., Cohen, B., Wittum, T. E., & Larson, E. L. (2012). A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Reports, 127(1), 4-22. doi: 10.1177/003335491212700103 DOI: https://doi.org/10.1177/003335491212700103

Lassok, B., & Tenhagen, B. A. (2013). From pig to pork: methicillin-resistant Staphylococcus aureus in the pork production chain. Journal of Food Protection, 76(6), 1095-1108. doi: 10.4315/0362-028X.JFP-12-341 DOI: https://doi.org/10.4315/0362-028X.JFP-12-341

Li, J. (2017a). Current status and prospects for in-feed antibiotics in the different stages of pork production a review. Asian-Australasian Journal of Animal Sciences, 30(12), 1667-1673. doi: 10.5713/ajas.17.0418 DOI: https://doi.org/10.5713/ajas.17.0418

Li, J., Jiang, N., Ke, Y., Feßler, A. T., Wang, Y., Schwarz, S., & Wu, C. (2017b). Characterization of pig-associated methicillin-resistant Staphylococcus aureus. Veterinary Microbiology, 201, 183-187. doi: 10.1016/j.vetmic.2017.01.017 DOI: https://doi.org/10.1016/j.vetmic.2017.01.017

Li, X., Rensing, C., Vestergaard, G., Arumugam, M., Nesme, J., Gupta, S., Brejnrod, A. D., & Sørensen, S. J. (2022). Metagenomic evidence for co-occurrence of antibiotic, biocide and metal resistance genes in pigs. Environment International, 158, 106899. doi: 10.1016/j.envint.2021.106899 DOI: https://doi.org/10.1016/j.envint.2021.106899

Liao, S. F., & Nyachoti, M. (2017). Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition, 3(4), 331-343. doi: 10.1016/j.aninu.2017.06.007 DOI: https://doi.org/10.1016/j.aninu.2017.06.007

Lima, M. F. P., Borges, M. A., Parente, R. S., Victória, R. C. Jr., & Oliveira, M. E. de. (2015). Staphylococcus aureus e as infecções hospitalares-Revisão de Literatura. Uningá Review Journal, 21(1), 32-39.

Liu, W. C., Ye, M., Liao, J. H., Zhao, Z. H., Kim, I. H., & An, L. L. (2018). Application of complex probiotics in swine nutrition-a review. Annals of Animal Science, 18(2), 335-350. doi: 10.2478/aoas-2018-0005 DOI: https://doi.org/10.2478/aoas-2018-0005

Lopes, E., Conceição, T., Poirel, L., Lencastre, H. de, & Aires-de-Sousa, M. (2019). Epidemiology and antimicrobial resistance of methicillin-resistant Staphylococcus aureus isolates colonizing pigs with different exposure to antibiotics. PLoS One, 14(11), e0225497. doi: 10.1371/journal.pone.0225497 DOI: https://doi.org/10.1371/journal.pone.0225497

Marquardt, R. R., & Li, S. (2018). Antimicrobial resistance in livestock: advances and alternatives to antibiotics. Animal Frontiers, 8(2), 30-37. doi: 10.1093/af/vfy001 DOI: https://doi.org/10.1093/af/vfy001

Martins, A., & Cunha, M. L. R. S. (2007). Methicillin resistance in Staphylococcus aureus and coagulase‐negative staphylococci: epidemiological and molecular aspects. Microbiology and immunology, 51(9), 787-795. doi: 10.1111/j.1348-0421.2007.tb03968.x DOI: https://doi.org/10.1111/j.1348-0421.2007.tb03968.x

Massotti, R., Silva, D. M. da, Bohrer, R., Guerra, D., Souza, E. L. de, & Bisognin, R. P. (2017). Biosseguridade na produção de suínos. Revista de Ciências Agroveterinárias, 16(2), 128-135. doi: 10.5965/223811711622017128 DOI: https://doi.org/10.5965/223811711622017128

Melo, M. (2016). Sanidade em suínos. Suinocultura INDUSTRIAL.COM.BR. https://www.suinoculturaindustrial.com.br/imprensa/sanidade-em-suinos/20080820-092508-3768

Ministério da Agricultura Pecuária e Abastecimento (2004). Secretaria de Defesa Agropecuária. Instrução Normativa Nº 47, de 18 de Junho de 2004. Aprova o Regulamento Técnico do Programa Nacional de Sanidade Suídea - PNSS. Diário Oficial da União: Art. 1, Brasília, DF, 23 jun. 2004.

Ministério da Agricultura Pecuária e Abastecimento (2013). Gabinete do Ministro. Instrução Normativa Nº 50, de 24 de Setembro de 2013. Diário Oficial da União: Brasília, DF, 23 set. 2013, seção I.

Ministério da Agricultura Pecuária e Abastecimento (2016). Secretaria de Defesa Agropecuária - Departamento de Saúde Animal. Programa Nacional de Sanidade dos Suídeos - Manual de Padronização -Procedimentos operacionais para vigilância de doenças hemorrágicas dos suínos em Unidades Veterinárias Locais. Brasília: Ministério da Agricultura Pecuária e Abastecimento, 2016. http://www.adapi.pi.gov.br/download/201909/ADAPI26_3934b2080f.pdf

Moon, D. C., Jeong, S. K., Hyun, B. H., & Lim, S. K. (2019). Prevalence and characteristics of methicillin-resistant Staphylococcus aureus isolates in pigs and pig farmers in Korea. Foodborne Pathogens and Disease, 16(4), 256-261. doi: 10.1089/fpd.2018.2509 DOI: https://doi.org/10.1089/fpd.2018.2509

Mourenza, Á., Gil, J. A., Mateos, L. M., & Letek, M. (2020). Alternative anti-infective treatments to traditional antibiotherapy against staphylococcal veterinary pathogens. Antibiotics, 9(10), 702-715. doi: 10.3390/antibiotics9100702 DOI: https://doi.org/10.3390/antibiotics9100702

Muurinen, J., Richert, J., Wickware, C. L., Richert, B., & Johnson, T. A. (2021). Swine growth promotion with antibiotics or alternatives can increase antibiotic resistance gene mobility potential. Scientific Reports, 11(1), 1-13. doi: 10.1038/s41598-021-84759-9 DOI: https://doi.org/10.1038/s41598-021-84759-9

Noschang, J. P., Moraes, R. E. de, Carpinelli, N. A., Schmidt, P. I., Oliveira, V. D. de, Silveira, R. F., & Silveira, I. D. B. (2017). Growth promoters (antibiotics) in swine feeding-review. Revista Electrónica de Veterinaria, 18(11), 1-12.

Ollé, M. A., Groff, P. M., Ruas, M. S., Ollé, F. A., Fluck, A. C., Silveira, R. F., & Alfaya, H. (2017). Uso de antibióticos na alimentação de suínos. Revisão de literatura. Revista Electrónica de Veterinaria, 18(10), 1-18.

Oppliger, A., Moreillon, P., Charrière, N., Giddey, M., Morisset, D., & Sakwinska, O. (2012). Antimicrobial resistance of Staphylococcus aureus strains acquired by pig farmers from pigs. Applied and Environmental Microbiology, 78(22), 8010-8014. doi: 10.1128/AEM.01902-12 DOI: https://doi.org/10.1128/AEM.01902-12

Parisi, A., Caruso, M., Normanno, G., Latorre, L., Miccolupo, A., Fraccalvieri, R., Intini, F., Manginelli, T., & Santagada, G. (2019). MRSA in swine, farmers and abattoir workers in Southern Italy. Food Microbiology, 82, 287-293. doi: 10.1016/j.fm.2019.03.003 DOI: https://doi.org/10.1016/j.fm.2019.03.003

Peeters, L. E., Argudín, M. A., Azadikhah, S., & Butaye, P. (2015). Antimicrobial resistance and population structure of Staphylococcus aureus recovered from pigs farms. Veterinary Microbiology, 180(1-2), 151-156. doi: 10.1016/j.vetmic.2015.08.018 DOI: https://doi.org/10.1016/j.vetmic.2015.08.018

Pereira, P. R., Bianchi, R. M., Hammerschmitt, M. E., Cruz, R. A., Hesse, K. L., Sonne, L., Pavarini, S. P., & Driemeier, D. (2020). Primary skin diseases and cutaneous manifestations of systemic diseases in swine. Pesquisa Veterinária Brasileira, 40, 579-588. doi: 10.1590/1678-5150-PVB-6704 DOI: https://doi.org/10.1590/1678-5150-pvb-6704

Pirolo, M., Gioffrè, A., Visaggio, D., Gherardi, M., Pavia, G., Samele, P., Samele, P., Ciambrone, L., Di Natale, R., Spatari, G., Casalinuovo, F., & Visca, P. (2019). Prevalence, molecular epidemiology, and antimicrobial resistance of methicillin-resistant Staphylococcus aureus from swine in southern Italy. BMC Microbiology, 19(1), 1-12. doi: 10.1186/s12866-019-1422-x DOI: https://doi.org/10.1186/s12866-019-1422-x

Quinn, P. J., Markey, B. K., Leonard, F. C., Hartigan, P., Fanning, S., & Fitzpatrick, E. S. (1999). Veterinary clinical microbiology. Moby’s.

Rodríguez-López, P., Filipello, V., Di Ciccio, P. A., Pitozzi, A., Ghidini, S., Scali, F., Ianieri, A., Zanardi, E., Losio, M. N., Simon A. C., & Alborali, G. L. (2020). Assessment of the antibiotic resistance profile, genetic heterogeneity and biofilm production of Methicillin-Resistant Staphylococcus aureus (MRSA) isolated from the Italian swine production chain. Foods, 9(9), 1141-1162. doi: 10.3390/foods9091141 DOI: https://doi.org/10.3390/foods9091141

Rossi, C. C., Pereira, M. F., & Giambiagi-deMarval, M. (2020). Underrated Staphylococcus species and their role in antimicrobial resistance spreading. Genetics and Molecular Biology, 43(1 Suppl. 2), e20190065. doi: 10.1590/1678-4685-GMB-2019-0065 DOI: https://doi.org/10.1590/1678-4685-gmb-2019-0065

Ruiz-Ripa, L., Feßler, A. T., Hanke, D., Sanz, S., Olarte, C., Mama, O. M., Eichhorn, I., Schwarz, S., & Torres, C. (2020). Coagulase-negative staphylococci carrying cfr and PVL genes, and MRSA/MSSA-CC398 in the swine farm environment. Veterinary Microbiology, 243, 108631. doi: 10.1016/j.vetmic.2020.108631 DOI: https://doi.org/10.1016/j.vetmic.2020.108631

Rushton, J., Ferreira, J. P., & Stärk, K. D. (2014). Antimicrobial resistance: the use of antimicrobials in the livestock sector. OECD Food, Agriculture and Fisheries Publishing.

Saber, H., Jasni, A. S., Jamaluddin, T. Z. M. T., & Ibrahim, R. (2017). A review of staphylococcal cassette chromosome mec (SCCmec) types in coagulase-negative staphylococci (CoNS) species. The Malaysian Journal of Medical Sciences: MJMS, 24(5), 7-18. doi: 10.21315/mjms2017.24.5.2 DOI: https://doi.org/10.21315/mjms2017.24.5.2

Santos, S. C. L., Saraiva, M. M. S., Moreira, A. L. B., Fº., Silva, N. M. V., De Leon, C. M. G., Pascoal, L. A. F., Givisiez, P. E. N., Gebreyes, W. A., & Oliveira, C. J. B. (2021). Swine as reservoirs of zoonotic borderline oxacillin-resistant Staphylococcus aureus ST398. Comparative Immunology, Microbiology and Infectious Diseases, 79, 101697. doi: 10.1016/j.cimid.2021.101697 DOI: https://doi.org/10.1016/j.cimid.2021.101697

Sasaki, Y., Yamanaka, M., Nara, K., Tanaka, S., Uema, M., Asai, T., & Tamura, Y. (2020). Isolation of ST398 methicillin-resistant Staphylococcus aureus from pigs at abattoirs in Tohoku region, Japan. Journal of Veterinary Medical Science, 82(9), 1400-1403. doi: 10.1292/jvms.20-0184 DOI: https://doi.org/10.1292/jvms.20-0184

Schoen, M. E., Peckham, T. K., Shirai, J. H., Kissel, J. C., Thapaliya, D., Smith, T. C., & Meschke, J. S. (2020). Risk of nasal colonization of methicillin-resistant Staphylococcus aureus during preparation of contaminated retail pork meat. Microbial Risk Analysis, 16, 100136. doi: 10.1016/j.mran.2020.100136 DOI: https://doi.org/10.1016/j.mran.2020.100136

Schwarz, L., Loncaric, I., Brunthaler, R., Knecht, C., Hennig-Pauka, I., & Ladinig, A. (2021). Exudative epidermitis in combination with staphylococcal pyoderma in suckling piglets. Antibiotics, 10(7), 840-863. doi: 10.3390/antibiotics10070840 DOI: https://doi.org/10.3390/antibiotics10070840

Seng, R., Leungtongkam, U., Thummeepak, R., Chatdumrong, W., & Sitthisak, S. (2017). High prevalence of methicillin-resistant coagulase-negative staphylococci isolated from a university environment in Thailand. International Microbiology, 20(2), 65-73. doi: 10.2436/20.1501.01.286

Serviço Brasileiro de Apoio às Micro e Pequenas Empresas (2016). Minha empresa sustentável: suinocultura. Centro SEBRAE de sustentabilidade. SEBRAE.

Shore, A. C., Deasy, E. C., Slickers, P., Brennan, G., O'Connell, B., Monecke, S., Ehricht, R., & Coleman, D. C. (2011). Detection of staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecI, mecR1, blaZ, and ccr genes in human clinical isolates of clonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 55(8), 3765-3773. doi: 10.1128/AAC.00187-11 DOI: https://doi.org/10.1128/AAC.00187-11

Silva, K. R., Santos, I. C., Sposito, P. H., Mota, E. A., Caetano, I. C. S., Barbosa, L. N., Gonçalves, D. D., & Martins, L. A. (2020). Detecção do gene mecA em Staphylococcus spp. isolados da cavidade nasal de suínos-dados preliminares. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 72, 1571-1575. doi: 10.1590/1678-4162-11589 DOI: https://doi.org/10.1590/1678-4162-11589

Smith, T. C. (2015). Livestock-associated Staphylococcus aureus: the United States experience. PLoS Pathogens, 11(2), e1004564. doi: 10.1371/journal.ppat.1004564 DOI: https://doi.org/10.1371/journal.ppat.1004564

Smith, T. C., Gebreyes, W. A., Abley, M. J., Harper, A. L., Forshey, B. M., Male, M. J., Martin, H. W., Molla, B. Z., Sreevatsan, S., Thakur, S., Thiruvengadam, M., & Davies, P. R. (2013). Methicillin-resistant Staphylococcus aureus in pigs and farm workers on conventional and antibiotic-free swine farms in the USA. PLoS One, 8(5), e63704. doi: 10.1371/journal.pone.0063704 DOI: https://doi.org/10.1371/journal.pone.0063704

Sun, J., Yang, M., Sreevatsan, S., Bender, J. B., Singer, R. S., Knutson, T. P., Marthaler, D. G., & Davies, P. R. (2017). Longitudinal study of Staphylococcus aureus colonization and infection in a cohort of swine veterinarians in the United States. BMC Infectious Diseases, 17(1), 1-13. doi: 10.1186/s12879-017-2802-1 DOI: https://doi.org/10.1186/s12879-017-2802-1

Sweeney, M. T., Lubbers, B. V., Schwarz, S., & Watts, J. L. (2018). Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. Journal of Antimicrobial Chemotherapy, 73(6), 1460-1463. doi: 10.1093/jac/dky043 DOI: https://doi.org/10.1093/jac/dky043

Tanomsridachchai, W., Changkaew, K., Changkwanyeun, R., Prapasawat, W., Intarapuk, A., Fukushima, Y., Yamasamit, N., Kapalamula, T. F., Nakajima, C., Suthienkul, O., & Suzuki, Y. (2021). Antimicrobial resistance and molecular characterization of methicillin-resistant Staphylococcus aureus isolated from slaughtered pigs and pork in the Central Region of Thailand. Antibiotics, 10(2), 206-218. doi: 10.3390/antibiotics10020206 DOI: https://doi.org/10.3390/antibiotics10020206

Thacker, P. A. (2013). Alternatives to antibiotics as growth promoters for use in swine production: a review. Journal of Animal Science and Biotechnology, 4(1), 1-12. doi: 10.1186/2049-1891-4-35 DOI: https://doi.org/10.1186/2049-1891-4-35

Tulinski, P., Fluit, A. C., Wagenaar, J. A., Mevius, D., van de Vijver, L., & Duim, B. (2012). Methicillin-resistant coagulase-negative staphylococci on pig farms as a reservoir of heterogeneous staphylococcal cassette chromosome mec elements. Applied and Environmental Microbiology, 78(2), 299-304. doi: 10.1128/AEM.05594-11 DOI: https://doi.org/10.1128/AEM.05594-11

Voss, A., Loeffen, F., Bakker, J., Klaassen, C., & Wulf, M. (2005). Methicillin-resistant Staphylococcus aureus in pig farming. Emerging Infectious Diseases, 11(12), 1965-1966. doi: 10.3201/eid1112.050428 DOI: https://doi.org/10.3201/eid1112.050428

Willing, B. P., Pepin, D. M., Marcolla, C. S., Forgie, A. J., Diether, N. E., & Bourrie, B. C. (2018). Bacterial resistance to antibiotic alternatives: a wolf in sheep’s clothing? Animal Frontiers, 8(2), 39-47. doi: 10.1093/af/vfy003 DOI: https://doi.org/10.1093/af/vfy003

Worthing, K. A., Brown, J., Gerber, L., Trott, D. J., Abraham, S., & Norris, J. M. (2018). Methicillin-resistant staphylococci amongst veterinary personnel, personnel-owned pets, patients and the hospital environment of two small animal veterinary hospitals. Veterinary Microbiology, 223, 79-85. doi: 10.1016/j.vetmic.2018.07.021 DOI: https://doi.org/10.1016/j.vetmic.2018.07.021

Xiong, W., Sun, Y., & Zeng, Z. (2018). Antimicrobial use and antimicrobial resistance in food animals. Environmental Science and Pollution Research, 25(19), 18377-18384. doi: 10.1007/s11356-018-1852-2 DOI: https://doi.org/10.1007/s11356-018-1852-2

Yang, H., Paruch, L., Chen, X., Van Eerde, A., Skomedal, H., Wang, Y., Liu, D., & Liu Clarke, J. (2019). Antibiotic application and resistance in swine production in China: current situation and future perspectives. Frontiers in Veterinary Science, 6, 136-143. doi: 10.3389/fvets.2019.00136 DOI: https://doi.org/10.3389/fvets.2019.00136

Zaffiri, L., Gardner, J., & Toledo-Pereyra, L. H. (2012). History of antibiotics. From salvarsan to cephalosporins. Journal of Investigative Surgery, 25(2), 67-77. doi: 10.3109/08941939.2012.664099 DOI: https://doi.org/10.3109/08941939.2012.664099

Zaman, S. B., Hussain, M. A., Nye, R., Mehta, V., Mamun, K. T., & Hossain, N. (2017). A review on antibiotic resistance: alarm bells are ringing. Cureus, 9(6), e1403. doi: 10.7759/cureus.1403 DOI: https://doi.org/10.7759/cureus.1403

Downloads

Published

2023-01-29

How to Cite

dos Santos, I. C., Barbosa, L. N., Martins, L. de A., Rey, L. M. R., Fazoli, K. G. Z., Silva, L. L. da, … Gonçalves, D. D. (2023). Presence of antibiotic-resistant bacteria in pigs for consumption - one health challenge - Literature review. Semina: Ciências Agrárias, 43(6), 2823–2844. https://doi.org/10.5433/1679-0359.2022v43n6p2823

Issue

Section

Review Article

Most read articles by the same author(s)

1 2 3 4 > >> 

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.