Potencial de bioestimulante na mitigação de danos de herbicidas aplicados em pós-emergência na cultura da soja
DOI:
https://doi.org/10.5433/1679-0359.2024v45n6p1975Palavras-chave:
Ascophyllum nodsosum, Glycine max, Cloransulam, Extrato de algas, Fotossíntese, Lactofen.Resumo
Uma alternativa para minimizar os efeitos da indução de resistência aos herbicidas é a rotação de ingredientes ativos. Entre os herbicidas amplamente utilizados, destacam-se os inibidores das enzimas acetolactato sintase (ALS) e da protoporfirinogênio oxidase (PROTOX). No entanto, a utilização destes pode causar uma série de danos ao metabolismo fotossintético da soja e comprometer o desenvolvimento da cultura, tendo como alternativa para mitigar os efeitos a aplicação de bioestimulante derivado da alga Ascophyllum nodsosum. Portanto, objetivou-se com o presente estudo verificar o potencial de um bioestimulante derivado de A. nodosum em mitigar danos ao processo fotossintético de plantas de soja tratadas com herbicidas em casa de vegetação e pós-emergência. Para isto, foi instalado um experimento em casa de vegetação com nove tratamentos, em arranjo fatorial com 3 aplicações de herbicidas (sem herbicida; Cloransulan; Lactofen) X 3 aplicações de biostimulante (sem aplicação; 3 dias após a aplicação dos herbicidas (DAA); 6 DAA). Foram realizadas avaliações de trocas gasosas, índices de clorofilas e fluorescência da clorofila a. Por meio dos resultados obtidos foi possível concluir que aos 2 dias após a aplicação dos bioestimulantes, os herbicidas não proporcionaram inibição das trocas gasosas das plantas de soja. Por outro lado, aos 10 DAA dos herbicidas foi possível constatar que o cloransulam e lactofen alterou os parâmetros da fluorescência da clorofila a, porém não foi constatado efeito protetor do bioestimulante. Embora não tenha efeito isolado do bioestimulante nos parâmetros da fluorescência, sua aplicação aos 3 DAA dos herbicidas proporcionou incrementos na taxa fotossintética, condutância estomática e na eficiência da carboxilação das plantas de soja. É possível concluir que o bioestimulante tem potencial de uso na cultura da soja com o propósito de mitigar os efeitos da aplicação de herbicidas seletivos.
Downloads
Referências
Anli, M., Kaoua, M. E., Boutasknit, A., ben-Laouane, R., Toubali, S., Baslam, M., Lyamlouli, K., Hafidi, M., & Meddich, A. (2020). Seaweed extract application and arbuscular mycorrhizal fungal inoculation: a tool for promoting growth and development of date palm (Phoenix dactylifera L.) cv «Boufgous». South African Journal of Botany, 132(1), 15-21. doi: 10.1016/j.sajb.2020.04.004
Beckie, H. J. (2011). Herbicide‐resistant weed management: focus on glyphosate. Pest Management Science, 67(9), 1037-1048. doi: 10.1002/ps.2195
Bontempo, A. F., Alves, F. M., Carneiro, G. D. O. P., Machado, L. G., Silva, L. O. D., & Aquino, L. A. (2016). Influência de bioestimulantes e nutrientes na emergência e no crescimento inicial de feijão, soja e milho. Revista Brasileira de Milho e Sorgo, 15(1), 86-93. doi: 10.18512/1980-6477/rbms.v15n1p86-93.
Buchanan, B. B., Gruissem, W., & Jones, R. L. (Eds.). (2015). Biochemistry and molecular biology of plants. John Wiley & Sons.
Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1), 3-41. doi: 10.1007/s11104-014-2131-8
Carretero, D. M. (2008). Efeitos da inibição da protoporfirinogênio IX oxidase sobre as trocas gasosas e fluorescência da clorofila em plantas de soja (Glycine max L. Merrill). Dissertação de mestrado, Universidade Federal de Viçosa, Viçosa, MG, Brasil.
Cavalcante, W. S. da S., Silva, N. F. da, Teixeira, M. B., Cabral, F. R., Fº., Nascimento, P. E. R., & Corrêa, F. R. (2020). Eficiência dos bioestimulantes no manejo do déficit hídrico na cultura da soja. Irriga, 25(4), 754-763. doi: 10.15809/irriga.2020v25n4p754-763
Chen, S., Yang, J., Zhang, M., Strasser, R. J., & Qiang, S. (2016). Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise OJIP. Environmental and Experimental Botany, 122(1), 126-140. doi: 10.1016/j.envexpbot.2015.09.011
Chittora, D., Meena, M., Barupal, T., Swapnil, P., & Sharma, K. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and Biophysics Reports, 22(1), 100737. doi: 10.1016/j.bbrep.2020.100737
Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856-867. doi: 10.1111/tpj.13299
Christoffoleti, P. J., & Nicolai, M. (2016). Aspectos de resistência de plantas daninhas a herbicidas. Dissertação de mestrado, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, SP, Brasil.
Coelho, A. F., Corrêa, B. O., Freitas Pires, F. de, & Pereira, S. R. (2019). Avaliação da aplicação foliar de biofertilizante em quatro cultivares de soja. Ensaios e Ciência C Biológicas Agrárias e da Saúde, 23(1), 2-6. doi: 10.17921/1415-6938.2019v23n1p2-6
Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3), 371-393. doi: 10.1007/s10811-010-9560-4
Datta, A., Ullah, H., Tursun, N., Pornprom, T., Knezevic, S. Z., & Chauhan, B. S. (2017). Managing weeds using crop competition in soybean [Glycine max (L.) Merr.]. Crop Protection, 95(1), 60-68. doi: 10. 1016/j.cropro.2016.09.005
Dong, S., Wang, W., Jiang, Y., Ma, Z., Yan, C., Liu, L., & Cui, G. (2019). Antioxidant and proteomic analysis of soybean response to drought during soybean flowering. Ekoloji, 28(107), 2041-2052.
Dourado, D., Neto, Dario, G. J. A., Barbieri, A. P. P., & Martin, T. N. (2014). Ação de bioestimulante no desempenho agronômico de milho e feijão. Bioscience Journal, 30(1), 371-379.
Du Jardin, P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulturae, 196(1), 3-14. doi: 10.1016/j.scienta.2015.09.021
El-Katony, T. M., Nour El-Dein, M. M., El-Fallal, A. A., Ibrahim, N. G., & Mousa, M. M. (2020). Substrate–fungus interaction on the enzymatic and non-enzymatic antioxidant activities of solid state fermentation system. Bioresources and Bioprocessing, 7(1), 1-11. doi: 10.1186/s40643-020-00316-8
El-Samad, E. H. A., Glala, A. A., El Baset, A. A., & Nadia, M. O. (2019). Improving the establishment, growth and yield of tomato seedlings transplanted during summer season by using natural plant growth bio-stimulants. Middle East Journal of Agriculture Research, 8(1), 311-329.
Eullaffroy, P., Frankart, C., Aziz, A., Couderchet, M., & Blaise, C. (2009). Energy fluxes and driving forces for photosynthesis in Lemna minor exposed to herbicides. Aquatic Botany, 90(2), 172-178. doi: 10.1016/j.aquabot.2008.09.002.
Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042. doi: 10.1590/S1413-70542011000600001
Fraga, D. S., Agostinetto, D., Langaro, A. C., Oliveira, C., Ulguim, A. R., & Silva, J. D. G. (2019). Morphological and metabolic changes in soybean plants cultivated in irrigated rice rotation and as affected by imazapyr and imazapic herbicides carryover. Planta Daninha, 37(1), 1-10. doi: 10.1590/S0100-83582019370100023
Garcia, V. V., Silva, M. A. de A. e, & Dalazen, G. (2024). Efeito da palha e da precipitação pluviométrica no controle de Amaranthus hybridus com Imazetapir + Flumioxazina. Semina: Ciências Agrárias, 45(5), 1579-1592. doi: 10.5433/1679-0359.2024v45n5p1579
Guan, X., Chen, X., Qiu, C., Qian, Y., Chen, J., Shao, C., Xie, J., Deng, G., & Peng, C. (2020). Effects of long-term herbicide application on the crops in soybean-peanut rotations in the red soil upland of Southern China. Field Crops Research, 248(1), 107723, 1-9. doi: 10.1016/j.fcr.2020.107723.
Hasanuzzaman, M., Parvin, K., Bardhan, K., Nahar, K., Anee, T. I., Masud, A. A. C., & Fotopoulos, V. (2021). Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. Cells, 10(10) 2537, 1-29. doi: 10.3390/cells10102537
Joshi-Paneri, J., Chamberland, G., & Donnelly, D. (2020). Effects of Chelidonium majus and Ascophyllum nodosum extracts on growth and photosynthesis of soybean. Acta Agrobotanica, 73(1), 1-6. doi: 10.5586/aa.7313
Karpstein, C. L., Jr., & Waureck, A. (2020). Associação do uso de bioestimulante e lactofen nas características e na produtividade da cultura da soja. Revista Scientia Rural, 1(1), 1-9.
Krenchinski, F. H., Castro, E. B. de, Cesto, V. J. S., Belapart, D., Rodrigues, D. M., Carbonari, C. A., & Velini, E. D. (2019). Naphthalic anhydride increases tolerance of common bean to herbicides. Journal of Plant Protection Research, 59(3), 383-391. doi: 10.24425/jppr.2019.129754
Kulkarni, M. G., Rengasamy, K. R., Pendota, S. C., Gruz, J., Plačková, L., Novák, O., Doležal, K., & Van Staden, J. (2019). Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. New Biotechnology, 48(1), 83-89. doi: 10.1016/j.nbt.2018.08.004
Lamego, F. P., Ruchel, Q., Kaspary, T. E., Gallon, M., Basso, C. J., & Santi, A. L. (2013). Habilidade competitiva de cultivares de trigo com plantas daninhas. Planta Daninha, 31(3), 521-531. doi: 10.1590/S0100-83582013000300004
Machado, E. C., Schmidt, P. T., Medina, C. L., & Ribeiro, R. V. (2005). Respostas da fotossíntese de três espécies de citros a fatores ambientais. Pesquisa Agropecuária Brasileira, 40(1), 1161-1170. doi: 10.1590/S0100-204X2005001200002
Mącik, M., Gryta, A., & Frąc, M. (2020). Biofertilizers in agriculture: an overview on concepts, strategies and effects on soil microorganisms. Advances in Agronomy, 162(1), 31-87. doi: 10.1016/bs.agron.2020.02.001
Mahmoud, S. H., Salama, D. M., El-Tanahy, A. M., & El-Samad, E. H. A. (2019). Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield and nutritional quality of red radish plants. Annals of Agricultural Sciences, 64(2), 167-175. doi: 10.1016/j.aoas.2019.11.002
Mansoor, S., Ali Wani, O., Lone, J. K., Manhas, S., Kour, N., Alam, P., Ahmad, A., & Ahmad, P. (2022). Reactive oxygen species in plants: from source to sink. Antioxidants, 11(2), 225, 1-14. doi: 10.3390/antiox11020225
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany, 51(345), 659-668. doi: 10.1093/jexbot/51.345.659
Merotto, A., Jr., Wagner, J., & Meneguzzi, C. (2015). Effects of glyphosate and foliar application of micronutrients in transgenic soybean. Bioscience Journal, 31(2), 499-508. doi: 10.14393/BJ-v31n2a2015-22307
Moles, T. M., Pompeiano, A., Reyes, T. H., Scartazza, A., & Guglielminetti, L. (2016). The efficient physiological strategy of a tomato landrace in response to short-term salinity stress. Plant Physiology and Biochemistry, 109(1), 262-272. doi: 10.1016/j.plaphy.2016.10.008
Mrid, R. B., Benmrid, B, Hafsa, J., Boukcim, H., Sobeh, M., & Yasri, A. (2021). Secondary metabolites as biostimulant and bioprotectant agents: a review. Science of the Total Environment, 777(1), 146204. doi: 10.1016/j.scitotenv.2021.146204
Novais, R. D., Neves, J. C. L., Barros, N. D., Oliveira, A. D., Garrido, W. E., Araújo, J. D., & Lourenço, S. (1991). Métodos de pesquisa em fertilidade do solo. EMBRAPA SEA. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/547925/metodos-de-avaliacao-da-fertilidade-do-solo#:~:text=Os%20mais %20empregados%20sao%3A%201,6)%20Analises%20quimicas%20de%20solo
Oliveira, M. C., Osipitan, A., Begcy, K., & Werle, R. (2020). Cover crops, hormones and herbicides: priming an integrated weed management strategy, Plant Science, 301(1), 110550, 1-5. doi: 10.1016/j.plantsci.2020.110550
Oliveira, R. S. de, Jr., Constantin, J., & Inoue, M. H. (2011). Biologia e manejo de plantas daninhas. Omnipax.
Perboni, A. T., Martinazzo, E. G., Silva, D. M., & Bacarin, M. A. (2015). Baixas temperaturas sobre a fluorescência da clorofila a em plantas de diferentes híbridos de canola. Ciência Rural, 45(1), 215-222. doi: 10.1590/0103-8478cr20131427
Santos, H. G., Jocomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbrearas, J. F., Coelho, M. R., Almeida, J. A., Araujo, J. C., Fº., Oliveira, J. B., & Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos. EMBRAPA, Centro Nacional de Pesquisa de Solos. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1094003/sistema-brasileiro-de-classificacao-de-solos
Santos, V. M. dos, Vaz-de-Melo, A., Cardoso, D. P., Gonçalves, A. H., Sousa, D. D. C. V. de, & Silva, Á. R. (2017). Uso de bioestimulantes no crescimento de plantas de soja. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 12(3), 512-517. doi: 10.18378/rvads.v12i3.4139
Silva, N. F., Clemente, G. S., Teixeira, M. B., Soares, F. A. L., Cunha, F. N., & Azevedo, L. O. da S. (2017). Use of foliar fertilizers for the specific physiological management of different soybean crop stages. American Journal of Plant Sciences, 8(4), 810. doi: 10.4236/ajps.2017.84056
Sousa, D. M. G., & Lobato, E. (2004). Cerrado: correção do solo e adubação (2a ed.). EMBRAPA Informação Tecnológica.
Stirbet, A. & Govindjee (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104(1), 236-257. doi: 10.1016/j.jphotobiol.2010.12.010
Strasser, R. J., Srivastava, A., & Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. In M. Yunus (Ed.), Probing photosynthesis: mechanisms, regulation and adaptation (pp. 445-483). London.
Traxler, C., Gaines, T. A., Küpper, A., Luemmen, P., & Dayan, F. E. (2023). The nexus between reactive oxygen species and the mechanism of action of herbicides. Journal of Biological Chemistry, 299(11), 105267, 1-19. doi: 10.1016/j.jbc.2023.105267
Tripathy, B. C., Mohapatra, A., & Gupta, I. (2007). Impairment of the photosynthetic apparatus by oxidative stress induced by photosensitization reaction of protoporphyrin IX. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(6), 860-868. doi: 10.1016/j.bbabio.2007.03.008
Vanlerberghe, G. C. (2013). Alternative oxidase: a mitochondrial respiratory pathway to maintain Anli, M., Kaoua, M. E., Boutasknit, A., ben-Laouane, R., Toubali, S., Baslam, M., Lyamlouli, K., Hafidi, M., & Meddich, A. (2020). Seaweed extract application and arbuscular mycorrhizal fungal inoculation: a tool for promoting growth and development of date palm (Phoenix dactylifera L.) cv «Boufgous». South African Journal of Botany, 132(1), 15-21. doi: 10.1016/j.sajb.2020.04.004 DOI: https://doi.org/10.1016/j.sajb.2020.04.004
Beckie, H. J. (2011). Herbicide‐resistant weed management: focus on glyphosate. Pest Management Science, 67(9), 1037-1048. doi: 10.1002/ps.2195 DOI: https://doi.org/10.1002/ps.2195
Bontempo, A. F., Alves, F. M., Carneiro, G. D. O. P., Machado, L. G., Silva, L. O. D., & Aquino, L. A. (2016). Influência de bioestimulantes e nutrientes na emergência e no crescimento inicial de feijão, soja e milho. Revista Brasileira de Milho e Sorgo, 15(1), 86-93. doi: 10.18512/1980-6477/rbms.v15n1p86-93 DOI: https://doi.org/10.18512/1980-6477/rbms.v15n1p86-93
Buchanan, B. B., Gruissem, W., & Jones, R. L. (Eds.). (2015). Biochemistry and molecular biology of plants. John Wiley & Sons.
Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1), 3-41. doi: 10.1007/s11104-014-2131-8 DOI: https://doi.org/10.1007/s11104-014-2131-8
Carretero, D. M. (2008). Efeitos da inibição da protoporfirinogênio IX oxidase sobre as trocas gasosas e fluorescência da clorofila em plantas de soja (Glycine max L. Merrill). Dissertação de mestrado, Universidade Federal de Viçosa, Viçosa, MG, Brasil.
Cavalcante, W. S. da S., Silva, N. F. da, Teixeira, M. B., Cabral, F. R., Fº., Nascimento, P. E. R., & Corrêa, F. R. (2020). Eficiência dos bioestimulantes no manejo do déficit hídrico na cultura da soja. Irriga, 25(4), 754-763. doi: 10.15809/irriga.2020v25n4p754-763 DOI: https://doi.org/10.15809/irriga.2020v25n4p754-763
Chen, S., Yang, J., Zhang, M., Strasser, R. J., & Qiang, S. (2016). Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise OJIP. Environmental and Experimental Botany, 122(1), 126-140. doi: 10.1016/j.envexpbot.2015.09.011 DOI: https://doi.org/10.1016/j.envexpbot.2015.09.011
Chittora, D., Meena, M., Barupal, T., Swapnil, P., & Sharma, K. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and Biophysics Reports, 22(1), 100737. doi: 10.1016/j.bbrep.2020.100737 DOI: https://doi.org/10.1016/j.bbrep.2020.100737
Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856-867. doi: 10.1111/tpj.13299 DOI: https://doi.org/10.1111/tpj.13299
Christoffoleti, P. J., & Nicolai, M. (2016). Aspectos de resistência de plantas daninhas a herbicidas. Dissertação de mestrado, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, SP, Brasil.
Coelho, A. F., Corrêa, B. O., Freitas Pires, F. de, & Pereira, S. R. (2019). Avaliação da aplicação foliar de biofertilizante em quatro cultivares de soja. Ensaios e Ciência C Biológicas Agrárias e da Saúde, 23(1), 2-6. doi: 10.17921/1415-6938.2019v23n1p2-6 DOI: https://doi.org/10.17921/1415-6938.2019v23n1p2-6
Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3), 371-393. doi: 10.1007/s10811-010-9560-4 DOI: https://doi.org/10.1007/s10811-010-9560-4
Datta, A., Ullah, H., Tursun, N., Pornprom, T., Knezevic, S. Z., & Chauhan, B. S. (2017). Managing weeds using crop competition in soybean [Glycine max (L.) Merr.]. Crop Protection, 95(1), 60-68. doi: 10. 1016/j.cropro.2016.09.005 DOI: https://doi.org/10.1016/j.cropro.2016.09.005
Dong, S., Wang, W., Jiang, Y., Ma, Z., Yan, C., Liu, L., & Cui, G. (2019). Antioxidant and proteomic analysis of soybean response to drought during soybean flowering. Ekoloji, 28(107), 2041-2052.
Dourado, D., Neto, Dario, G. J. A., Barbieri, A. P. P., & Martin, T. N. (2014). Ação de bioestimulante no desempenho agronômico de milho e feijão. Bioscience Journal, 30(1), 371-379.
Du Jardin, P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulturae, 196(1), 3-14. doi: 10.1016/j.scienta.2015.09.021 DOI: https://doi.org/10.1016/j.scienta.2015.09.021
El-Katony, T. M., Nour El-Dein, M. M., El-Fallal, A. A., Ibrahim, N. G., & Mousa, M. M. (2020). Substrate–fungus interaction on the enzymatic and non-enzymatic antioxidant activities of solid state fermentation system. Bioresources and Bioprocessing, 7(1), 1-11. doi: 10.1186/s40643-020-00316-8 DOI: https://doi.org/10.1186/s40643-020-00316-8
El-Samad, E. H. A., Glala, A. A., El Baset, A. A., & Nadia, M. O. (2019). Improving the establishment, growth and yield of tomato seedlings transplanted during summer season by using natural plant growth bio-stimulants. Middle East Journal of Agriculture Research, 8(1), 311-329.
Eullaffroy, P., Frankart, C., Aziz, A., Couderchet, M., & Blaise, C. (2009). Energy fluxes and driving forces for photosynthesis in Lemna minor exposed to herbicides. Aquatic Botany, 90(2), 172-178. doi: 10.1016/j.aquabot.2008.09.002 DOI: https://doi.org/10.1016/j.aquabot.2008.09.002
Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042. doi: 10.1590/S1413-70542011000600001 DOI: https://doi.org/10.1590/S1413-70542011000600001
Fraga, D. S., Agostinetto, D., Langaro, A. C., Oliveira, C., Ulguim, A. R., & Silva, J. D. G. (2019). Morphological and metabolic changes in soybean plants cultivated in irrigated rice rotation and as affected by imazapyr and imazapic herbicides carryover. Planta Daninha, 37(1), 1-10. doi: 10.1590/S0100-83582019370100023 DOI: https://doi.org/10.1590/s0100-83582019370100023
Garcia, V. V., Silva, M. A. de A. e, & Dalazen, G. (2024). Efeito da palha e da precipitação pluviométrica no controle de Amaranthus hybridus com Imazetapir + Flumioxazina. Semina: Ciências Agrárias, 45(5), 1579-1592. doi: 10.5433/1679-0359.2024v45n5p1579 DOI: https://doi.org/10.5433/1679-0359.2024v45n5p1579
Guan, X., Chen, X., Qiu, C., Qian, Y., Chen, J., Shao, C., Xie, J., Deng, G., & Peng, C. (2020). Effects of long-term herbicide application on the crops in soybean-peanut rotations in the red soil upland of Southern China. Field Crops Research, 248(1), 107723, 1-9. doi: 10.1016/j.fcr.2020.107723 DOI: https://doi.org/10.1016/j.fcr.2020.107723
Hasanuzzaman, M., Parvin, K., Bardhan, K., Nahar, K., Anee, T. I., Masud, A. A. C., & Fotopoulos, V. (2021). Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. Cells, 10(10) 2537, 1-29. doi: 10.3390/cells10102537 DOI: https://doi.org/10.3390/cells10102537
Joshi-Paneri, J., Chamberland, G., & Donnelly, D. (2020). Effects of Chelidonium majus and Ascophyllum nodosum extracts on growth and photosynthesis of soybean. Acta Agrobotanica, 73(1), 1-6. doi: 10.5586/aa.7313 DOI: https://doi.org/10.5586/aa.7313
Karpstein, C. L., Jr., & Waureck, A. (2020). Associação do uso de bioestimulante e lactofen nas características e na produtividade da cultura da soja. Revista Scientia Rural, 1(1), 1-9.
Krenchinski, F. H., Castro, E. B. de, Cesto, V. J. S., Belapart, D., Rodrigues, D. M., Carbonari, C. A., & Velini, E. D. (2019). Naphthalic anhydride increases tolerance of common bean to herbicides. Journal of Plant Protection Research, 59(3), 383-391. doi: 10.24425/jppr.2019.129754 DOI: https://doi.org/10.24425/jppr.2019.129754
Kulkarni, M. G., Rengasamy, K. R., Pendota, S. C., Gruz, J., Plačková, L., Novák, O., Doležal, K., & Van Staden, J. (2019). Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. New Biotechnology, 48(1), 83-89. doi: 10.1016/j.nbt.2018.08.004 DOI: https://doi.org/10.1016/j.nbt.2018.08.004
Lamego, F. P., Ruchel, Q., Kaspary, T. E., Gallon, M., Basso, C. J., & Santi, A. L. (2013). Habilidade competitiva de cultivares de trigo com plantas daninhas. Planta Daninha, 31(3), 521-531. doi: 10.1590/S0100-83582013000300004 DOI: https://doi.org/10.1590/S0100-83582013000300004
Machado, E. C., Schmidt, P. T., Medina, C. L., & Ribeiro, R. V. (2005). Respostas da fotossíntese de três espécies de citros a fatores ambientais. Pesquisa Agropecuária Brasileira, 40(1), 1161-1170. doi: 10.1590/S0100-204X2005001200002 DOI: https://doi.org/10.1590/S0100-204X2005001200002
Mącik, M., Gryta, A., & Frąc, M. (2020). Biofertilizers in agriculture: an overview on concepts, strategies and effects on soil microorganisms. Advances in Agronomy, 162(1), 31-87. doi: 10.1016/bs.agron.2020.02.001 DOI: https://doi.org/10.1016/bs.agron.2020.02.001
Mahmoud, S. H., Salama, D. M., El-Tanahy, A. M., & El-Samad, E. H. A. (2019). Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield and nutritional quality of red radish plants. Annals of Agricultural Sciences, 64(2), 167-175. doi: 10.1016/j.aoas.2019.11.002 DOI: https://doi.org/10.1016/j.aoas.2019.11.002
Mansoor, S., Ali Wani, O., Lone, J. K., Manhas, S., Kour, N., Alam, P., Ahmad, A., & Ahmad, P. (2022). Reactive oxygen species in plants: from source to sink. Antioxidants, 11(2), 225, 1-14. doi: 10.3390/antiox11020225 DOI: https://doi.org/10.3390/antiox11020225
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany, 51(345), 659-668. doi: 10.1093/jexbot/51.345.659 DOI: https://doi.org/10.1093/jxb/51.345.659
Merotto, A., Jr., Wagner, J., & Meneguzzi, C. (2015). Effects of glyphosate and foliar application of micronutrients in transgenic soybean. Bioscience Journal, 31(2), 499-508. doi: 10.14393/BJ-v31n2a2015-22307 DOI: https://doi.org/10.14393/BJ-v31n2a2015-22307
Moles, T. M., Pompeiano, A., Reyes, T. H., Scartazza, A., & Guglielminetti, L. (2016). The efficient physiological strategy of a tomato landrace in response to short-term salinity stress. Plant Physiology and Biochemistry, 109(1), 262-272. doi: 10.1016/j.plaphy.2016.10.008 DOI: https://doi.org/10.1016/j.plaphy.2016.10.008
Mrid, R. B., Benmrid, B, Hafsa, J., Boukcim, H., Sobeh, M., & Yasri, A. (2021). Secondary metabolites as biostimulant and bioprotectant agents: a review. Science of the Total Environment, 777(1), 146204. doi: 10.1016/j.scitotenv.2021.146204 DOI: https://doi.org/10.1016/j.scitotenv.2021.146204
Novais, R. D., Neves, J. C. L., Barros, N. D., Oliveira, A. D., Garrido, W. E., Araújo, J. D., & Lourenço, S. (1991). Métodos de pesquisa em fertilidade do solo. EMBRAPA SEA. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/547925/metodos-de-avaliacao-da-fertilidade-do-solo#:~:text=Os%20mais %20empregados%20sao%3A%201,6)%20Analises%20quimicas%20de%20solo
Oliveira, M. C., Osipitan, A., Begcy, K., & Werle, R. (2020). Cover crops, hormones and herbicides: priming an integrated weed management strategy, Plant Science, 301(1), 110550, 1-5. doi: 10.1016/j.plantsci.2020.110550 DOI: https://doi.org/10.1016/j.plantsci.2020.110550
Oliveira, R. S. de, Jr., Constantin, J., & Inoue, M. H. (2011). Biologia e manejo de plantas daninhas. Omnipax.
Perboni, A. T., Martinazzo, E. G., Silva, D. M., & Bacarin, M. A. (2015). Baixas temperaturas sobre a fluorescência da clorofila a em plantas de diferentes híbridos de canola. Ciência Rural, 45(1), 215-222. doi: 10.1590/0103-8478cr20131427 DOI: https://doi.org/10.1590/0103-8478cr20131427
Santos, H. G., Jocomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbrearas, J. F., Coelho, M. R., Almeida, J. A., Araujo, J. C., Fº., Oliveira, J. B., & Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos. EMBRAPA, Centro Nacional de Pesquisa de Solos. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1094003/sistema-brasileiro-de-classificacao-de-solos
Santos, V. M. dos, Vaz-de-Melo, A., Cardoso, D. P., Gonçalves, A. H., Sousa, D. D. C. V. de, & Silva, Á. R. (2017). Uso de bioestimulantes no crescimento de plantas de soja. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 12(3), 512-517. doi: 10.18378/rvads.v12i3.4139 DOI: https://doi.org/10.18378/rvads.v12i3.4139
Silva, N. F., Clemente, G. S., Teixeira, M. B., Soares, F. A. L., Cunha, F. N., & Azevedo, L. O. da S. (2017). Use of foliar fertilizers for the specific physiological management of different soybean crop stages. American Journal of Plant Sciences, 8(4), 810. doi: 10.4236/ajps.2017.84056 DOI: https://doi.org/10.4236/ajps.2017.84056
Sousa, D. M. G., & Lobato, E. (2004). Cerrado: correção do solo e adubação (2a ed.). EMBRAPA Informação Tecnológica.
Stirbet, A. & Govindjee (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104(1), 236-257. doi: 10.1016/j.jphotobiol.2010.12.010 DOI: https://doi.org/10.1016/j.jphotobiol.2010.12.010
Strasser, R. J., Srivastava, A., & Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. In M. Yunus (Ed.), Probing photosynthesis: mechanisms, regulation and adaptation (1 ed., pp. 445-483). London.
Traxler, C., Gaines, T. A., Küpper, A., Luemmen, P., & Dayan, F. E. (2023). The nexus between reactive oxygen species and the mechanism of action of herbicides. Journal of Biological Chemistry, 299(11), 105267, 1-19. doi: 10.1016/j.jbc.2023.105267 DOI: https://doi.org/10.1016/j.jbc.2023.105267
Tripathy, B. C., Mohapatra, A., & Gupta, I. (2007). Impairment of the photosynthetic apparatus by oxidative stress induced by photosensitization reaction of protoporphyrin IX. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(6), 860-868. doi: 10.1016/j.bbabio.2007.03.008 DOI: https://doi.org/10.1016/j.bbabio.2007.03.008
Vanlerberghe, G. C. (2013). Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. International Journal of Molecular Sciences, 14(4), 6805-6847. doi: 10.3390/ijms14046805 DOI: https://doi.org/10.3390/ijms14046805
Vargas, L., Silva, D. R. O., Agostinetto, D., Matallo, M. B., Santos, F. M., Almeida, S. D. B., Chavarria, G., & Silva, D. F. P. (2014). Glyphosate influence on the physiological parameters of Conyza bonariensis biotypes. Planta Daninha, 32(1), 151-159. doi: 10.1590/S0100-83582014000100017 DOI: https://doi.org/10.1590/S0100-83582014000100017
Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: a global perspective. Frontiers in Plant Science, 7(1), 2049. doi: 10.3389/fpls.2016.02049 DOI: https://doi.org/10.3389/fpls.2016.02049
Yusuf, M. A., Kumar, D., Rajwanshi, R., Strasser, R. J., Tsimilli-Michael, M., & Sarin, N. B. (2010). Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1797(8), 1428-1438. doi: 10.1016/j.bbabio.2010.02.002 DOI: https://doi.org/10.1016/j.bbabio.2010.02.002
Zanatta, C. B., Benevenuto, R. F., Nodari, R. O., & Agapito-Tenfen, S. Z. (2020). Stacked genetically modified soybean harboring herbicide resistance and insecticide rCry1Ac shows strong defense and redox homeostasis disturbance after glyphosate-based herbicide application. Environmental Sciences Europe, 32(104), 1-17. doi: 10.1186/s12302-020-00379-6 DOI: https://doi.org/10.1186/s12302-020-00379-6
Zhou, R., Kan, X., Chen, J., Hua, H., Li, Y., Ren, J., Feng, K., Liu, H., Deng, D., & Yin, Z. (2019). Drought-induced changes in photosynthetic electron transport in maize probed by prompt fluorescence, delayed fluorescence, P700 and cyclic electron flow signals. Environmental and Experimental Botany, 158(1), 51-62. doi: 10.1016/j.envexpbot.2018.11.005 DOI: https://doi.org/10.1016/j.envexpbot.2018.11.005
Zobiole, L. H. S., Oliveira, R. S., Jr., Constantin, J., & Biffe, D. F. (2011). Prevenção de injúrias causadas por glyphosate em soja RR por meio do uso de aminoácido. Planta Daninha, 29(1), 195-205. doi: 10.1590/S0100-83582011000100022 DOI: https://doi.org/10.1590/S0100-83582011000100022
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Christiano Lima Lobo de Andrade, Alessandro Guerra da Silva, Alan Carlos da Costa, Marconi Batista Teixeira, Adinan Alves da Silva, Wilker Alves Morais, Guilherme Braga Pereira Braz, Fernando Rodrigues Cabral Filho, Frederico Antonio Loureiro Soares
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.