Growing conditions and substrates for producing collard green seedlings in a tropical climate

Authors

DOI:

https://doi.org/10.5433/1679-0359.2024v44n2p411

Keywords:

Brassica oleracea var. acephala, Seedling quality, Photo-converting mesh, Savannah.

Abstract

Determining an efficient system for seedling production in greenhouses and on photo-converting mesh, considering the substrates' quality, is essential for obtaining productive and economically viable crops. In this context, the objective of the present study was to evaluate the effects of growing conditions and substrates on the production of collard green seedlings in a tropical climate. Therefore, five growing conditions (i.e., A1: agricultural greenhouse, A2: red 35% Chromatinet®, A3: red 50% Chromatinet®50%, A4: silver 35% Chromatinet®, and A5: silver 50% Chromatinet®) were randomly combined into subdivided plots with four substrate types (S1: OrganoAmazon®, S2: OrganoAmazon® + PuroHumus®, S3: OrganoAmazon® + PuroHumus® + soil + cattle manure, and S4: OrganoAmazon® + PuroHumus® + soil + cattle manure + carbonized rice husk). Subsequently, we evaluated their effects on the seedlings' quantitative and qualitative variables. Results showed that the combined use of silver 35% Chromatinet® (A4) and substrate S2 (OrganoAmazon® + PuroHumus®) promoted the best growth conditions for collard green seedlings The greenhouse (A1) when combined with substrate S4 (OrganoAmazon® + PuroHumus® + soil + cattle manure + carbonized rice husk), also favored the production of collard green seedlings. The substrate formulated with OrganoAmazon® + PuroHumus® + soil + manure + carbonized rice husk (S3) is an alternative for producing collard green seedlings. Conversely, the red nets (A2 and A3) and the OrganoAmazon® substrate (S1) used alone did not favor the production of collard green seedlings in a tropical climate.

Author Biographies

João Luiz Lopes Monteiro Neto, Universidade Federal de Roraima

Prof. Dr., Department of Phytotechnics, Universidade Federal de Roraima, UFRR, Boa Vista, RR, Brazil.

José de Anchieta Alves de Albuquerque, Universidade Federal de Roraima

Prof. Dr., Postgraduate Program in Agronomy, Universidade Federal de Roraima, POSAGRO/UFRR, Boa Vista, RR, Brazil.

Valdinar Ferreira Melo, Universidade Federal de Roraima

Prof. Dr., Department of Soils and Agricultural Engineering, UFRR, Boa Vista, RR, Brazil.

Wellington Farias Araújo, Universidade Federal de Roraima

Prof. Dr., Department of Soils and Agricultural Engineering, UFRR, Boa Vista, RR, Brazil.

Ricardo Manuel Bardales-Lozano, Universidade Federal de Roraima

Prof. Dr., Postgraduate Program in Agronomy, Universidade Federal de Roraima, POSAGRO/UFRR, Boa Vista, RR, Brazil.

Luiz Fernandes Silva Dionisio, Universidade Federal de Roraima

Prof. Dr., Center for Natural Sciences and Technology, Universidade do Estado do Pará, UEPA, Castanhal, PA, Brazil.

Richard Alcides Molina Alvarez, Universidade Federal de Roraima

Student of the Doctoral Course of the Postgraduate Program in Agronomy, POSAGRO/UFRR, Boa Vista, RR, Brazil. 

Glauber Ferreira Barreto, Universidade Federal de Roraima

Student of the Doctoral Course of the Postgraduate Program in Agronomy, POSAGRO/UFRR, Boa Vista, RR, Brazil. 

Fleorliene Félix Liarte, Universidade Federal de Roraima

Student of the Undergraduate Course in Animal Science, UFRR, Boa Vista, RR, Brazil.

Carlos Abanto-Rodríguez, Universidad Nacional Ciro Alegría

Prof. Dr., Professional School of Agricultural and Forestry Engineering, Universidad Nacional Ciro Alegría, UNCA, Huamachuco, La Libertad, Perú.

References

Araújo, W. F., Andrade, A. S., Jr., Medeiros, R. D. de, & Sampaio, R. A. de. (2001). Precipitação pluviométrica provável em Boa Vista, Estado de Roraima, Brasil. Revista Brasileira de Engenharia Agrícola e Ambiental, 5(3), 563-567. doi: 10.1590/S1415-43662001000300032 DOI: https://doi.org/10.1590/S1415-43662001000300032

Ashenafi, E. L., Nyman, M. C., Holley, J. M., Mattson, N. S., & Rangarajan, A. (2022). Phenotypic plasticity and nutritional quality of three kale cultivars (Brassica oleracea L. var. acephala) under field, greenhouse, and growth chamber environments. Environmental and Experimental Botany, 199, 1-9. doi: 10.1016/j.envexpbot.104895 DOI: https://doi.org/10.1016/j.envexpbot.2022.104895

Bauer, N., Tkalec, M., Major, N., Vasari, A. T., Tovic, M., Vitko, S., Ban, D., Ban, S. G., & Salopek-Soundo, B. (2022). Mechanisms of kale (Brassica oleracea var. acephala) tolerance to individual and combined stresses of drought and elevated temperature. International Journal of Molecular Sciences, 23(19), 11494. doi: 10.3390/ijms231911494 DOI: https://doi.org/10.3390/ijms231911494

Caron, B. O., Souza, V. Q., Trevisam, R., Behling, A., Schmidt, D., Bamberg, R., & Eloy, E. (2012). Eficiência de conversão da radiação fotossinteticamente ativa interceptada em fitomassa de mudas de eucalipto. Revista Árvore, 36(5), 833-842. doi: 10.1590/S0100-67622012000500005 DOI: https://doi.org/10.1590/S0100-67622012000500005

Chagas, J. H., Pinto, J. E. B. P., Bertolucci, S. K. V., Costa, A. G., Jesus, H. C. R., & Alves, P. B. (2013). Produção, teor e composição química do óleo essencial de hortelã-japonesa cultivada sob malhas fotoconversoras. Horticultura Brasileira, 31(2), 297-303. doi: 10.1590/S0102- 05362013000200020 DOI: https://doi.org/10.1590/S0102-05362013000200020

Chiomento, J. L. T., Silva, I. C. L., Fagundes, L. D., Honrich, R. T., Trentin, N. S., Trentin, T. S., Dornelles, A. G., Anzolin, J., & Petry, C. (2021). Production of kale seedlings on substrates containing proportions of organic compost. Research, Society and Development, 10(8), e58010817707. doi: 10.33448/rsd-v10i8.17707 DOI: https://doi.org/10.33448/rsd-v10i8.17707

Choi, D. S., Nguyen, T. K. L., & Oh, M. M. (2022). Growth and biochemical responses of kale to supplementary irradiation with different peak wavelengths of UV-A light-emitting diodes. Horticulture, Environment, and Biotechnology, 63, 65-76. doi: 10.1007/s13580-021-00377-4 DOI: https://doi.org/10.1007/s13580-021-00377-4

Chowdhury, M., Kiraga, S., Islam, N. M., Ali, M., Reza, N. M., Lee, W. H., & Chung, S. O. (2021). Effects of temperature, relative humidity, and carbon dioxide concentration on growth and glucosinolate content of kale grown in a plant factory. Food, 10(7), 1524. doi: 10.3390/foods10071524 DOI: https://doi.org/10.3390/foods10071524

Díaz-Urbano, M., Velasco, P., Cartea, M. E., & Rodríguez, V. M. (2022). Metabolism reorganization in kale (Brassica oleracea L. var acephala) populations with divergent glucosinolate content under thermal stresses. Agronomy, 12(11), 2652. doi: 10.3390/agronomy12112652 DOI: https://doi.org/10.3390/agronomy12112652

Dutra, A. T. B., Silva, N. E., Rodrigues, C. R. F., Vieira, S., Aragão, R. M., & Silveira, J. A. (2011). Temperaturas elevadas afetam a distribuição de íons em plantas de feijão caupi pré-tratadas com NaCl. Revista Brasileira de Engenharia Agrícola e Ambiental, 15(4), 403-409. doi: 10.1590/S1415-43662011000400012 DOI: https://doi.org/10.1590/S1415-43662011000400012

Ferreira, D. F. (2019). Sisvar: a computer analysis system to fixed effects split plot type designs. Brazilian Journal of Biometrics, 37(4), 529-535. doi: 10.28951/rbb.v37i4.450 DOI: https://doi.org/10.28951/rbb.v37i4.450

Henrique, P. C., Alves, J. D., Deuner, S., Goulart, P. F. P., & Livramento, D. E. do. (2011). Aspectos fisiológicos do desenvolvimento de mudas de café cultivadas sob telas de diferentes colorações. Pesquisa Agropecuária Brasileira, 46(5), 458-465. doi: 10.1590/S0100-204X2011000500002 DOI: https://doi.org/10.1590/S0100-204X2011000500002

Meng, Q., Kelly, N., & Runkle, E. S. (2019). Substituting green or far-red radiation for blue radiation induces shade avoidance and promotes growth in lettuce and kale. Environmental and Experimental Botany, 162, 383-391. doi: 10.1016/j.envexpbot.2019.03.016 DOI: https://doi.org/10.1016/j.envexpbot.2019.03.016

Monteiro, J. L. L., Neto, Albuquerque, J. A. A. de, Oliveira, A. T., Sakasaki, R. T., Silva, E. S. da, Maia, S. S., Zborowski, L. G. C., Monteiro, B. J. Z., Carmo, I. L. G. S., & Amaya, J. Z. E. (2022). Environments and substrates for “pimenta-de-cheiro” (Capsicum chinense Jacq.) seedling production in the Amazon savana. Revista Agro@mbiente On-line, 16, 1-15. doi: 10.18227/1982-8470ragro.v16i0.7309 DOI: https://doi.org/10.18227/1982-8470ragro.v16i0.7309

Monteiro, J. L. L., Neto, Araújo, W. F., Maia, S. S., Silva, I. K. A. C., Chagas, E. A., Amaya, J. Z. E., & Abanto-Rodriguez, C. (2019). Use of substrates and hydrogel to produce desert rose seedlings. Ornamental Horticulture, 25(4), 336-344. doi: 10.1590/2447-536X.v25i4.2004 DOI: https://doi.org/10.1590/2447-536x.v25i4.2004

Monteiro, J. L. L., Neto, Araújo, W. F., Vilarinho, L. B. O., Nunes, T. K. O., Silva, E. S. da, Maia, S. S., Albuquerque, J. A. A. de, Chagas, E. A., Siqueira, R. H. S., & Abanto-Rodriguez, C. (2018). Seedlings production of two tomato (Solanum licopersicum L.) cultivars under different environments and substrates. Acta Agronómica, 67(2), 270-276. doi: 10.15446/acag.v67n2.67943 DOI: https://doi.org/10.15446/acag.v67n2.67943

Monteiro, J. L. L., Neto, Araújo, W. F., Vilarinho, L. B. O., Silva, E. S. da, Sakazaki, R. T., Maia, S. S., & Araújo, W. B. L. de. (2016). Produção de mudas de pimentão (Capsicum annuum L.) em diferentes ambientes e substratos. Agrária - Revista Brasileira de Ciência Agrárias, 11(4), 289-297. doi: 10.5039/agraria.v11i4a5395 DOI: https://doi.org/10.5039/agraria.v11i4a5395

Novo, M. C. S. S., Prela-Pantano, A., Trani, P. E., & Blat, F. E. (2010). Desenvolvimento e produção de genótipos de couve manteiga. Horticultura Brasileira, 28(3), 321-325. doi: 10.1590/S0102-05362010000300014 DOI: https://doi.org/10.1590/S0102-05362010000300014

Rodrigues, E. T., Leal, P. A. M., Costa, E., Paula, T. S. de, & Gomes, V. A. (2010). Produção de mudas de tomateiro em diferentes substratos e recipientes em ambiente protegido. Horticultura Brasileira, 28(4), 483-488. doi: 10.1590/S0102-05362010000400018 DOI: https://doi.org/10.1590/S0102-05362010000400018

Sakazaki, R. T., Araújo, W. F., Monteiro, J. L. L., Neto, Chagas, P. C., Murga-Orrilo, H., Bardales-Lozano, R. M., & Abanto-Rodríguez, C. (2019). Shade nets and substrates in seedling production of Annona squamosa L. in the Roraima Cerrado. Semina: Ciências Agrárias, 40(6), 2535-2544. doi: 10.5433/1679-0359.2019v40n6p2535 DOI: https://doi.org/10.5433/1679-0359.2019v40n6p2535

Shimada, A., Kubo, T., Tominaga, S., & Yamamoto, M. (2017). Effect of temperature on photosynthesis characteristics in the passion fruits ‘summer queen’ and ‘ruby star’. The Horticulture Journal, 86(2), 194-199. doi: 10.2503/hortj.OKD-023 DOI: https://doi.org/10.2503/hortj.OKD-023

Silva, C. R., Vasconcelos, C. S., Silva, V. J., Sousa, L. B., & Sanches, M. C. (2013). Crescimento de tomateiro com diferentes telas de sombreamento. Bioscience Journal, 29, 1415-1420. https://seer.ufu.br/index.php/biosciencejournal/article/view/18062

Stamps, R. H. (2009). Use of colored shade netting in horticulture. HortScience, 44(2), 239-241. doi: 10.21273/HORTSCI.44.2.239 DOI: https://doi.org/10.21273/HORTSCI.44.2.239

Welter, M. K., Melo, V. F., Bruckner, C. H., Góes, H. T. P. D., Chagas, E. A., & Uchôa, S. C. P. (2011). Efeito da aplicação de pó de basalto no desenvolvimento inicial de mudas de camu-camu (Myrciaria dubia H.B.K. McVaugh). Revista Brasileira de Fruticultura, 33(3), 922-931. doi: 10.1590/S0100-29452011000300028 DOI: https://doi.org/10.1590/S0100-29452011000300028

Downloads

Published

2024-03-21

How to Cite

Monteiro Neto, J. L. L., Albuquerque, J. de A. A. de, Melo, V. F., Araújo, W. F., Bardales-Lozano, R. M., Dionisio, L. F. S., … Abanto-Rodríguez, C. (2024). Growing conditions and substrates for producing collard green seedlings in a tropical climate. Semina: Ciências Agrárias, 44(2), 411–428. https://doi.org/10.5433/1679-0359.2024v44n2p411

Issue

Section

Articles

Most read articles by the same author(s)