Symptoms of deficiency and initial growth of maize cultivated with biochar under nutrient omission
DOI:
https://doi.org/10.5433/1679-0359.2022v43n5p2079Keywords:
Diagnosis by subtraction, Visual diagnosis, Zea mays.Abstract
Maize is the second largest agricultural crop in Brazil. It reaches high yields as supported by the intensive use of technologies, particularly mineral fertilization, which is normally costly. To lower production costs and improve crop productivity on small farms, the present study tested the efficiency of poultry litter biochar as a source of nutrients in the initial growth of BRS 2022 maize by the ‘diagnosis by subtraction’ method. The study was carried out in a greenhouse, using a completely randomized experimental design with a factorial arrangement (7×3). The following treatments were tested: complete nutrient solution (N, P, K, Ca, Mg, S, B, Cl, Cu, Fe, Mn, and Zn); complete nutrient solutions with omission of only nitrogen (-N), phosphorus (-P), potassium (-K), calcium (-Ca), and magnesium (-Mg); and complete absence of nutrients and three increasing rates of biochar (0, 5, and 10 t ha-1). Absence of nutrients with biochar rates significantly influenced the growth and dry biomass production variables of the maize plants. Except for stem diameter and the ratio between shoot and root dry biomass, all variables were influenced by the interaction between nutrients and biochar rates. Nutrient omission limited maize growth; however, the application of biochar reduced these limitations and significantly improved all analyzed variables. In the treatments without fertilizer, maize growth was very low, with generalized symptoms of deficiency that would decrease with the application of biochar. Even in the treatment with complete fertilization, which showed some slight visual symptoms, these decreased with the application of biochar.Downloads
References
Chen, D., Cao, B., Qi, L., Yin, L., Wang, S., & Deng, X. (2016). Silicon-moderated K-deficiency-induced leaf chlorosisby decreasing putrescine accumulation in sorghum. Annals of Botany, 118(2), 305-315. doi: 10. 1093/aob/mcw111
Chrysargyris, A., Prasad, M., Kavanagh, A., & Tzortzakis, N. (2019). Biochar type and ratio as a peat additive/partial peat replacement in growing media for cabbage seedling production. Agronomy, 9(11), 693. doi: 10.3390/agronomy9110693
Coelho, A. M. (2007). Manejo da adubação nitrogenada na cultura do milho. (Circular Técnica, 96). EMBRAPA Milho e Sorgo.
Fernandes, J. D., Chaves, L. H. G., Mendes, J. S., Chaves, I. B., & Tito, G. A. (2019). Alterações na salinidade do solo com o uso de diferentes doses de biocarvão. Revista de Ciências Agrárias, 42(1), 89-98. doi: 10. 19084/RCA18248
Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência Agronômica, 35(6), 1039-1042, doi: 10.1590/S1413-70542011000600001
Ferreira, M. M. M. (2012). Sintomas de deficiência de macro e micronutrientes de plantas de milho híbrido BRS 1010. Revista Agro@mbiente On-line, 6(1), 74-83. doi: 10.18227/1982-8470ragro.v6i1.569
Gautam, P., Gustafson, D. M., & Wicks, Z. (2011). Phosphorus concentration, uptake and drymatter yield of maize hybrids. World Journal of Agricultura Sciences, 7(4), 418-424.
Gondim, A. R. O., Prado, R. M., Fonseca, I. M., & Alves, A. U. (2016). Crescimento inicial do milho cultivar BRS 1030 sob omissão de nutrientes em solução nutritiva. Revista Ceres, 63(5), 706-714. doi: 10.1590/0 034-737X201663050016
Instituto Brasileiro de Geografia e Estatística (2020). Levantamento Sistemático da Produção Agrícola. https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9201-levantamento-sistematico-da-producao-agricola.html?=&t=resultados
Karim, A. A., Kumar, M., Singh, S. K., Panda, C. R., & Mishra, B. K. (2017). Potassium enriched biochar production by thermal plasma processing of banana peduncle for soil application. Journal of Analytical and Applied Pyrolysis, 123(1), 165-172. doi: 10.1016/j.jaap.2016.12.009
Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna Oxisol. Plant Soil, 333(3), 117-128. doi: 10.1007/s11 104-010-0327-0
Malavolta, E. (2006). Manual de nutrição de plantas. Agronômica Ceres.
Marschner, P. (1995). Mineral nutrition of higher plants. Academic Press.
Oram, N. J., Van de Voorde, T. F. J., Ouwehand, G. J., Bezemer, T. M., Mommer, L., Jeffery, S., & Groenigen, J. W. V. (2014). Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability. Agriculture, Ecosystems and Environment, 191(6), 92-98. doi: 10.1016/j.agee. 2014.03.031
Parvage, M. M., Ulén, B., Eriksson, J., Strock, J., & Kirchmann, H. (2013). Phosphorus availability in soils amended with wheat residue char. Biology and Fertility of Soils, 49(10), 245-250. doi: 10.1007/s00374-012-0746-6
Petter, F. A., Andrade, F. R., Marimon, B. H., Jr., Gonçalves, L. G., & Schossler, T. R. (2012). Biochar como condicionador de substrato para a produção de mudas de eucalipto. Revista Caatinga, 25(4), 44-51.
Phillips, C. L., Meyer, K. M., Garcia-Jaramillo, M., Weidman, C. S., Stewart, C. E., Wanzek, T., Grusak, M. A., Watts, D. W., Novak, J., & Trippe, K. M. (2022). Towards predicting biochar impacts on plant-available soil nitrogen content. Biochar, 4(9), 1-15. doi: 10.1007/s42773-022-00137-2
Savvas, D., & Gruda, N. (2018). Application of soilless culture technologies in the modern greenhouse industry- A review. European Journal of Horticultural Science, 83(5), 280-293. doi: 10.17660/eJHS. 2018/83.5.2
Sorensen, R. B., & Lamb, M. C. (2016). Crop yield response to increasing biochar rates. Journal of Crop Improvement, 30(6), 703-712. doi: 10.1080/15427528.2016.1231728
Vincent, J. M. (1970). Manual for the practical study of root nodule bacteria. Blackwell.
Wang, L., Xue, C., Nie, X., Liu, Y., & Chen, F. (2018). Effects of biochar application on soil potassium dynamics and crop uptake. Journal of Plant Nutrition and Soil Science, 181(5), 635-64. doi: 10.1002/jpln. 201700528
Xu, G., Wei, L., Sun, J., Shao, H., & Chang, S. X. (2013). What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: Direct or indirect mechanism?. Ecological Engineering, 52(3), 119-124. doi: 10.1016/j.ecoleng.2012.12.091
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Semina: Ciências Agrárias

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.