Análise de proteínas de leucócitos polimorfonucleares de gatos domésticos

Autores

DOI:

https://doi.org/10.5433/1679-0359.2024v45n6p1873

Palavras-chave:

Felis catus, Grânulos, Neutrófilos, Proteômica.

Resumo

Os neutrófilos são a primeira linha de defesa contra os microrganismos, sendo assim, uma célula muito importante na imunidade inata. Objetivou-se com este estudo caracterizar o proteoma de neutrófilo de Felis catus. Para isso, os granulócitos foram obtidos de sangue de gatos, purificados e utilizados 1x107 de células para identificação das proteínas.Foram identificadas 102 proteínas de neutrófilos de gatos, sendo classificadas conforme a abundância. A proteoglicano-3 associada a alguns processos biológicos como ativação dos neutrófilos e resposta imune, foi a proteína mais abundante. Dentre os processos, nas rotas metabólicas a maior quantidade de proteínas identificadas está envolvida na glicólise, que foram nove proteínas. Verificou-se também as proteínas envolvidas em função molecular, no componente celular e nos processos biológicos. Espera-se que a identificação das proteínas nesse estudo auxilie as futuras pesquisas elucidando algumas particularidades da espécie contribuindo com possíveis marcadores ou fármacos auxiliando no diagnóstico rápido e não invasivo de doenças que acometem em particular os felinos.

Downloads

Não há dados estatísticos.

Biografia do Autor

Gabriela Mota Sena de Oliveira, Universidade Estadual de Santa Cruz

Doutoranda do Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Santa Cruz, UESC, Ilhéus, BA, Brasil.

Irma Yuliana Mora Ocampo, Universidade Estadual de Santa Cruz

Profa. Dra., Engenheira Agrônoma, Pesquisadora de Produtividade PDJ/CNPq, UESC, Ilhéus, BA, Brasil.

Carlos Priminho Pirovani, Universidade Estadual de Santa Cruz

Prof. Dr., Departamento de Ciências Biológicas Brasil, UESC, Ilhéus, BA, Brasil.

José Luís Menezes Varjão, Universidade Estadual de Santa Cruz

Doutorando do Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Santa Cruz, UESC, Ilhéus, BA, Brasil.

Alexandre Dias Munhoz, Universidade Estadual de Santa Cruz

Prof. Dr., Departamento de Ciências Agrárias e Ambientais, UESC, Ilhéus, BA, Brasil.

Referências

Amulic, B., Cazalet, C., Hayes, G. L., Metzler, K. D., & Zychlinsky, A. (2012). Neutrophil function: from mechanisms to disease. Annual Review of Immunology, 30, 459-489. doi: 10.1146/annurev-immunol-020711-074942 DOI: https://doi.org/10.1146/annurev-immunol-020711-074942

Babior, B. M. (1999). NADPH oxidase : an update. The American Society of Hematology, 93(5), 1464-1476. doi: 10.1182/blood. V93.5.1464 DOI: https://doi.org/10.1182/blood.V93.5.1464.405a32_1464_1476

Baggiolini, M., Loetscher, P., & Moser, B. (1995). Interleukin-8 and the chemokine family. Journal International Immunopharmacoloy, 17(2), 103-108. doi: 10.1016/0192-0561(94)00088-6 DOI: https://doi.org/10.1016/0192-0561(94)00088-6

Bainton, D. F. (1999). Distinct granule populations in human neutrophils and lysosomal organelles identified by immuno-electron microscopy. Journal of Immunological Methods, 232(1-2), 153-168. doi: 10.1016/S0022-1759(99)00173-8 DOI: https://doi.org/10.1016/S0022-1759(99)00173-8

Borregaard, N. (2010). Neutrophils, from marrow to microbes. Immunity, 33(5), 657-670. doi: 10.1016/j.immuni.2010.11.011 DOI: https://doi.org/10.1016/j.immuni.2010.11.011

Borregaard, N., & Cowland, J. B. (1997). Granules of the human neutrophilic polymorphonuclear leukocyte. Blood, 89(10), 3503-3521. doi: 10.1182/blood.v89.10.3503 DOI: https://doi.org/10.1182/blood.V89.10.3503.3503_3503_3521

Borregaard, N., & Herlin, T. (1982). Energy metabolism of human neutrophils during phagocytosis. Journal Clinical Investigation, 70(3), 550-557. doi: 10.1172/jci110647 DOI: https://doi.org/10.1172/JCI110647

Borregaard, N., Sørensen, O. E., & Theilgaard-Mönch, K. (2007). Neutrophil granules: a library of innate immunity proteins. Trends in Immunology, 28(8), 340-345. doi: 10.1016/j.it.2007.06.002 DOI: https://doi.org/10.1016/j.it.2007.06.002

Botelho, R. J., Tapper, H., Furuya, W., Mojdami, D., & Grinstein, S. (2002). R-Mediated phagocytosis stimulates localized pinocytosis in human neutrophils 1. Journal of Immunology, 169(8), 4423-4429. doi: 10.4049/jimmunol.169.8.4423 DOI: https://doi.org/10.4049/jimmunol.169.8.4423

Brinkmann, V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D., Weinrauch Y., & Zychlinsky A. (2004). Neutrophil extracellular traps kill bacteria. Science, 303(5663), 1532-1535. doi: 10.1126/science.1092385 DOI: https://doi.org/10.1126/science.1092385

Certo, M., Tsai, C., Pucino, V., Ho, P., & Mauro, C. (2021). Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nature Reviews Immunology, 21(3), 151-161. doi: 10.1038/s41577-020-0406-2 DOI: https://doi.org/10.1038/s41577-020-0406-2

Chen, T., Li, Y., Sun, R., Hu, H., & Liu, Y. (2021). Receptor-mediated NETosis on neutrophils. Frontiers in Immunology, 12, 775267. doi: 10.3389/fimmu.2021.775267 DOI: https://doi.org/10.3389/fimmu.2021.775267

Cieutat, A.-M., Lobel, P., August, J. T., Kjeldsen, L., Sengeløv, H., Borregaard, N., & Bainton, D. F. (1998). Azurophilic granules of human neutrophilic leukocytes are deficient in lysosome-associated membrane proteins but retain the mannose 6-phosphate recognition marker. Blood, 91(3), 1044-1058. doi: 10.1182/blood. v91.3.1044 DOI: https://doi.org/10.1182/blood.V91.3.1044.1044_1044_1058

Collado, V. M., Domenech, A., Miró, G., Martin, S., Escolar, E., & Gomez-Lucia, E. (2012). Epidemiological aspects and clinicopathological findings in cats naturally infected with Feline Leukemia Virus (FeLV) and/or Feline Immunodeficiency Virus (FIV). Open Journal of Veterinary Medicine, 2(1), 13-20. doi: 10.4236/ojvm.2012.21003 DOI: https://doi.org/10.4236/ojvm.2012.21003

Fletcher, D. A., & Mullins, R. D. (2010). Cell mechanics and the cytoskeleton. Nature, 463(7280), 485-492. doi: 10.1038/nature08908.Cell DOI: https://doi.org/10.1038/nature08908

Folco, E. J., Mawson, T. L., Vromman, A., Bernardes-Souza, B., Franck, G., Persson, O., Nakamura, M., Newton, G., & Luscinskas, F. W. (2018). Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1α and cathepsin G. Arteriosclerosis Thrombosis and Vascular Biology, 38(8), 1901-1912. doi: 10.1161/ATVBAHA.118.311150 DOI: https://doi.org/10.1161/ATVBAHA.118.311150

Gonzalez-Aparicio, M., & Alfaro, C. (2019). Influence of interleukin-8 and neutrophil extracellular trap (NET) formation in the tumor microenvironment : is there a pathogenic role ? Journal of Immunology Research, 2019, 6252138. doi: 10.1155/2019/6252138 DOI: https://doi.org/10.1155/2019/6252138

Gordon, S. (2016). Phagocytosis: an imunobiologic process. Immunity, 44(3), 463-475. doi: 10.1016/j.immuni.2016.02.026 DOI: https://doi.org/10.1016/j.immuni.2016.02.026

Goyette, J., & Geczy, C. L. (2011). Inflammation-associated S100 proteins: new mechanisms that regulate function. Amino Acids, 41(4), 821-842. doi: 10.1007/s00726-010-0528-0 DOI: https://doi.org/10.1007/s00726-010-0528-0

Grogan, A., Reeves, E., Keep, N., Wientjes, F., Totty, N. F., Burlingame, A. L., Hsuan, J. J., & Segal, A. W. (1997). Cytosolic phox proteins interact with and regulate the assembly of coronin in neutrophils. Journal of Cell Science, 110(24), 3071-3081. doi: 10.1242/jcs.110.24.3071 DOI: https://doi.org/10.1242/jcs.110.24.3071

Haeggström, J. Z. (2018). Leukotriene biosynthetic enzymes as therapeutic targets. The Journal of Clinical Investigation, 128(7), 2680-2690. doi: 10.1172/JCI97945 DOI: https://doi.org/10.1172/JCI97945

Haeggström, J. Z., & Funk, C. D. (2011). Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chemical Reviews, 111(10), 5866-5898. doi: 10.1021/cr200246d DOI: https://doi.org/10.1021/cr200246d

Hong, W., Yang, J., Zou, J., Bi, Z., He, C., Lei, H., He, X., Li, X., Alu, A., Ren, W., Wang, Z., Jiang, X., Zhong, K., Jia, G., Yang, Y., Yu, W., Huang, Q., Yang, M., Zhou, Y., … Lu, S. (2022). Histones released by NETosis enhance the infectivity of SARS-CoV-2 by bridging the spike protein subunit 2 and sialic acid on host cells. Cellular & Molecular Immunology, 19(5), 577-587. doi: 10.1038/s41423-022-00845-6 DOI: https://doi.org/10.1038/s41423-022-00845-6

Jann, N. J., Schmaler, M., Kristian, S. A., Radek, K. A., Gallo, R. L., Nizet, V., Peschel, A., & Landmann, R. (2009). Neutrophil antimicrobial defense against Staphylococcus aureus is mediated by phagolysosomal but not extracellular trap-associated cathelicidin. Journal LeuKocyte Biology, 86(5), 1159-1169. doi: 10.1189/jlb.0209053 DOI: https://doi.org/10.1189/jlb.0209053

Jethwaney, D., Islam, M. R., Bernabe, D. B. V., Campbell, K. P., Nauseef, W. M., & Gibson, B. W. (2007). Proteomics analysis of plasma membrane and secretory vesicles from human neutrophils. Proteome Science, 5(12), 1-15. doi: 10.1186/1477-5956-5-12 DOI: https://doi.org/10.1186/1477-5956-5-12

Ley, K., Hoffman, H. M., Kubes, P., Cassatella, M. A., Zychlinsky, A., Hedrick, C. C., & Catz, S. D. (2018). Neutrophils: new insights and open questions. Science Imunology, 3(30), eaat4579. doi: 10.1126/ sciimmunol.aat4579 DOI: https://doi.org/10.1126/sciimmunol.aat4579

Lippolis, J. D., & Reinhardt, T. A. (2005). Proteomic survey of bovine neutrophils. Veterinary Immunology and Immunopathology, 103(1-2), 53-65. doi: 10.1016/j.vetimm.2004.08.019 DOI: https://doi.org/10.1016/j.vetimm.2004.08.019

McLeish, K. R., Merchant, M. L., Klein, J. B., & Ward, R. A. (2013). Technical note: proteomic approaches to fundamental questions about neutrophil biology. Journal of Leukocyte Biology, 94(4), 683-692. doi: 10.1189/jlb.1112591 DOI: https://doi.org/10.1189/jlb.1112591

Mirsaeidi, M., Gidfar, S., Vu, A., & Schraufnagel, D. (2016). Annexins family: insights into their functions and potential role in pathogenesis of sarcoidosis. Journal of Translational Medicine, 13(1), 1-9. doi: 10.1186/s12967-016-0843-7 DOI: https://doi.org/10.1186/s12967-016-0843-7

Moser, B., & Loetscher, P. (2001). Lymphocyte traffic control by chemokines. Chemokine Reviews, 2(2), 123-128. doi: 10.1038/84219 DOI: https://doi.org/10.1038/84219

Peters-Golden, M., & Henderson, W. R. (2007). Leukotrienes. The New England Journal Medicine, 357(18), 1841-1854. doi: 10.1056/NEJMra071371 DOI: https://doi.org/10.1056/NEJMra071371

Pick, R., Begandt, D., Stocker, T. J., Salvermoser, M., Thome, S., Ralph, T. B., Montanez, E., Harrison, U., Forn, I., Khandoga, A. G., Coletti, R., Weckbach, L. T., Brechtefeld, D., Haas, R., Imhof, A., Massberg, S., Sperandio, M., & Walzog, B. (2017). Coronin 1A, a novel player in integrin biology, controls neutrophil traf fi cking in innate immunity. Blood, 130(7), 847-858. doi: 10.1182/blood-2016-11-749622 DOI: https://doi.org/10.1182/blood-2016-11-749622

Piubelli, C., Cecconi, D., Astner, H., Caldara, F., Tessari, M., Carboni, L., Hamdan, M., Righetti, P. G., & Domenici, E. (2005). Proteomic changes in rat serum, polymorphonuclear and mononuclear leukocytes after chronic nicotine administration. Proteomics, 5(5), 1382-1394. doi: 10.1002/pmic.200401008 DOI: https://doi.org/10.1002/pmic.200401008

Piubelli, C., Galvani, M., Hamdan, M., Domenici, E., & Righetti, P. G. (2002). Proteome analysis of rat polymorphonuclear leukocytes: a two-dimensional electrophoresis / mass spectrometry approach. Electrophoresis, 23(2), 298-310. doi: 10.1002/1522-2683(200202)23:2<298::AID-ELPS298>3.0.CO;2-I. DOI: https://doi.org/10.1002/1522-2683(200202)23:2<298::AID-ELPS298>3.0.CO;2-I

Postlethwait, J. H., Woods, I. G., Ngo-Hazelett, P., Yan, Y., Kelly, P. D., Chu, F., Huang, H., Hill-Force, A., & Talbot, W. S. (2000). Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Research, 10(12), 1890-1902. doi: 10.1101/gr.164800.1 DOI: https://doi.org/10.1101/gr.164800

Quinn, M. T., & Gauss, K. A. (2004). Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. Journal of Leukocyte Biology, 76(4), 760-781. doi: 10.1189/jlb.0404216 DOI: https://doi.org/10.1189/jlb.0404216

Robinson, J. M., Karnovsky, M. L., & Karnovsky, M. I. (1982). Glycogen accumulation in polymorphonuclear leukocytes, inflammation. The Journal of Cell Biology, 95(3), 933-942. doi: 10.1083/jcb.95.3.933 DOI: https://doi.org/10.1083/jcb.95.3.933

Rodrigues, D. A. S., Prestes, E. B., Gama, A. M. S., Silva, L. S., Pinheiro, A. A. S., Ribeiro, J. M. C., Campos, R. M. P., Pimentel-Coelho, P. M., Souza, H. S., Dicko, A., Duffy, P. E., Fried, M., Francischetti, I. M. B., Saraiva, E. M., Paula, H. A., Neto, & Bozza, M. T. (2020). CXCR4 and MIF are required for neutrophil extracellular trap release triggered by Plasmodium -infected erythrocytes. PLoS Pathogens, 16(8), 1-23. doi: 10.1371/journal.ppat.1008230 DOI: https://doi.org/10.1371/journal.ppat.1008230

Roos, D., & Boer, M. de. (2013). Molecular diagnosis of chronic granulomatous disease. Clinical and Experimental Imumnulogy, 175(2), 139-149. doi: 10.1111/cei.12202 DOI: https://doi.org/10.1111/cei.12202

Sadiku, P., Willson, J. A., Ryan, E. M., Carmeliet, P., Whyte, M. K. B., & Walmsley, S. R. (2021). Neutrophils fuel effective immune responses through gluconeogenesis and glycogenesis neutrophils fuel effective immune responses through gluconeogenesis and glycogenesis. Cell Metabolism, 33(2), 411-423. doi: 10.1016/j.cmet.2020.11.016 DOI: https://doi.org/10.1016/j.cmet.2020.11.016

Salzer, U., Hinterdorfer, P., Hunger, U., Borken, C., & Prohaska, R. (2002). Ca ϩϩ -dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin ( annexin VII ), and sorcin. Blood, 99(7), 2569-2577. doi: 10.1182/blood. V99.7.2569 DOI: https://doi.org/10.1182/blood.V99.7.2569

ShinyGO 0.77 (2023). Gene Ontology Enrichment Analysis. South Dakota State University. http://bioinformatics.sdstate.edu/go/

Smith, P. D., Daviest, A., Crumptont, M. J., & Moss, S. E. (1994). Structure of the human annexin VI gene. The Proceedings of the National Academy of Sciences, 91(7), 2713-2717. doi: 10.1073/pnas.91.7.2713 DOI: https://doi.org/10.1073/pnas.91.7.2713

Sprenkeler, E. G. G., Tool, A. T. J., Henriet, S. S. V., Bruggen, R. Van, & Kuijpers, T. W. (2022a). Formation of neutrophil extracellular traps requires actin cytoskeleton rearrangements. Blood, 139(21), 3166-3180. doi: 10.1182/blood.2021013565 DOI: https://doi.org/10.1182/blood.2021013565

Sprenkeler, E. G. G., Zandstra, J., Kleef, N. D. Van, Goetschalckx, I., Verstegen, B., Aarts, C. E. M., Janssen, H., Tool, A. T. J., Mierlo, G. Van, Bruggen, R. Van, Jongerius, I., & Kuijpers, T. W. (2022b). S100A8/A9 Is a marker for the release of neutrophil extracellular traps and induces neutrophil activation. Cells, 11(2), 1-14. doi: 10.3390/cells11020236 DOI: https://doi.org/10.3390/cells11020236

Stillie, R., Farooq, S. M., & Gordon, J. R. (2009). The functional significance behind expressing two IL-8 receptor types on PMN. Journal of Leukocyte Biology, 86(3), 529-543. doi: 10.1189/jlb.0208125 DOI: https://doi.org/10.1189/jlb.0208125

Tomazella, G. G., Silva, I. da, Laure, H. J., Rosa, J. C., Chammas, R., Wiker, H. G., Souza, G. A. de, & Greene, L. J. (2009). Proteomic analysis of total cellular proteins of human neutrophils. Proteome Science, 7(32), 1-9. doi: 10.1186/1477-5956-7-32 DOI: https://doi.org/10.1186/1477-5956-7-32

Witko-Sarsat, V., Rieu, P., Descamps-Latscha, B., Lesavre, P., & Halbwachs-Mecarelli, L. (2000). Neutrophils: molecules, functions and pathophysiological aspects. Laboratory Investigation, 80(5), 617-653. doi: 10.1038/labinvest.3780067 DOI: https://doi.org/10.1038/labinvest.3780067

Villén, J., & Gygi, S. P. (2008). The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nature Procotol, 3(10), 1630-1638. doi: 10.1038/nprot.2008.150 DOI: https://doi.org/10.1038/nprot.2008.150

Uriarte, S. M., Powell, D. W., Luerman, G. C., Merchant, M. L., Cummins, T. D., Jog, N. R., Ward, R. A., & McLeish, K. R. (2008). Comparison of proteins expressed on secretory vesicle membranes and plasma membranes of human neutrophils. The Journal of Immunology, 180(8), 5575-5581. doi: 10.4049/ jimmunol.180.8.5575 DOI: https://doi.org/10.4049/jimmunol.180.8.5575

Universal Protein Knowledgebase (2023). Protein: Uniprot Knowledgebase. http://www.uniprot.org

Downloads

Publicado

2024-11-26

Como Citar

Oliveira, G. M. S. de, Ocampo, I. Y. M., Pirovani, C. P., Varjão, J. L. M., & Munhoz, A. D. (2024). Análise de proteínas de leucócitos polimorfonucleares de gatos domésticos. Semina: Ciências Agrárias, 45(6), 1873–1890. https://doi.org/10.5433/1679-0359.2024v45n6p1873

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)