Mineralização de carbono orgânico do biocarvão e do composto orgânico de cama de aviário em um Argissolo
DOI:
https://doi.org/10.5433/1679-0359.2021v42n6p3167Palavras-chave:
Substrato orgânico, Atividade microbiana, C-CO2, Cinética química.Resumo
A dinâmica dos resíduos orgânicos adicionados ao solo está intimamente relacionada à sua taxa de mineralização. Para isso, o presente estudo teve como objetivo avaliar a mineralização do carbono orgânico em amostras de solo incubadas com diferentes doses de biocarvão e de composto orgânico da cama de aviário. A mineralização de carbono foi avaliada experimentalmente medindo-se o C-CO2 liberado durante uma incubação de 200 g de solo misturado com doses de 0, 5, 10, 15 e 20 t ha-1 de biocarvão e de composto orgânico, durante 61 dias. A atividade microbiana do solo e consequentemente a mineralização de carbono aumentaram com a aplicação das doses de biocarvão e de composto orgânico da cama de aviário. A maior mineralização de C-CO2 foi observada nos tratamentos que receberam composto orgânico. A mineralização do carbono foi um processo dividido em duas fases distintas, a primeira com mineralização intensa e meia-vida curta do carbono e a segunda com processo de mineralização lento, com tendência de redução e estabilização do fluxo de C-CO2. A mineralização de carbono obtida com os substratos avaliados no presente estudo mostrou que os materiais pirolisados (biocarvão) são bastante eficientes para sequestrar o carbono do solo e mitigar o efeito “estufa”.Downloads
Referências
Andrade, C. A., Oliveira, C., & Cerri, C. C. (2006). Cinética de degradação da matéria orgânica de biossólidos após aplicação no solo e relação com a composição química inicial. Bragantia, 65(4), 659668. doi: 10.1590/S000687052006000400017
Araújo, M. D. M., Feitosa, M. M., Primo, A. A., Taniguchi, C. A. K., & Souza, H. A. (2020). Mineralization of nitrogen and carbon from organic compost from animal production waste. Revista Caatinga, 33(2), 310-320. doi: 10.1590/1983-21252020v33n204rc
Boesch, D. F., Brinsfield, R. B., & Magnien, R. E. (2001). Chesapeake bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture. Journal Environmental Quality, 30(2), 303-320. doi: 10.2134/jeq2001.302303x
Bramble, D. S. E., Gouveia, G. A., & Ramnarine, R. (2019). Organic Residues and Ammonium Effects on CO2 Emissions and Soil Quality Indicators in Limed Acid Tropical Soils. Soil Systems, 3(16), 1-15. doi: 10.3390/soilsystems3010016
Bruun, S., & El-Zehery, T. (2012). Biochar effect on the mineralization of soil organic matter. Pesquisa Agropecuária Brasileira, 47(5), 665-671. doi: 10.1590/S0100-204X2012000500005
Bruun, S., Jensen, E. S., & Jensen, L. S. (2008). Microbial mineralization and assimilation of black carbon: dependency on degree of thermal alteration. Organic Geochemistry, 39(7), 839-845. doi: 10.1016/j. orggeochem.2008.04.020
Capuani, S., Rigon, J. P. G., Beltrão, N. E. M., & Brito, J. F., Neto. (2012). Atividade microbiana em solos, influenciada por resíduos de algodão e torta de mamona. Revista Brasileira de Engenharia Agricola e Ambiental, 16(12), 1269-1274. doi: 10.1590/S1415-43662012001200002
Chee-Sanford, J. C., Mackie, R. I., Koike, S., Krapac, I., Maxwell, S., Lin, Y., & Aminov, R. I. (2009). Fate and transport of antibiotic residues and antibiotic resistance genetic determinants during manure storage, treatment, and land application. Journal of Environmental Quality, 38(3), 1086-1108. doi: 10.2134/jeq 2008.0128
Corrêa, J. C., & Miele, M. (2011). A cama de aves e os aspectos agronômicos, ambientais e econômicos. In J. C. P. Palhares, & A. Kunz (Eds.), Manejo ambiental na avicultura (pp. 125-152). (Documentos, 149). Concórdia: EMBRAPA Suínos e Aves. Recuperado de http://ainfo.cnptia.embrapa.br/digital/bitstream/ item/57059/1/a-cama-de-aves-e-os-aspcteos.pdf
Cross, A., & Sohi, S. P. (2011). The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biology and Biochemistry, 43(10), 2127-2134. doi: 10.1016/ j.soilbio.2011.06.016
Dalólio, F. S., Silva, J. N., Baêta, F. C., Tinôco, I. F. F., & Carneiro, A. C. O. (2017). Cama de frango e resíduo moveleiro: alternativa energética para a zona da mata mineira. Revista Engenharia na Agricultura, 25(3), 261-271. doi: 10.13083/reveng.v25i3.734
Dodor, D. E., Amanor, Y. J., Asamoah-Bediako, A., Maccarthy, D. S., & Dovie, D. B. K. (2019). Kinetics of carbon mineralization and sequestration of sole and/or co-amended biochar and cattle manure in a sandy soil. Communications in Soil Science and Plant Analysis, 50(20), 2593-2609. doi: 10.1080/00103624. 2019.1671443
Fernandes, J. D., Chaves, L. H. G., Mendes, J. S., Chaves, I. B., & Tito, G. A. (2018). Soil chemical amendments and the macronutrients mobility evaluation in oxisol treated with biochar. Journal of Agricultural Science, 10(10), 238-247. doi: 10.5539/jas.v10n10p238
Fernández, J. M., Nieto, M. A., López-De-Sá, E. G., Gascó, G., Méndez, A., & Plaza, C. (2014). Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers. Science of the Total Environment, 482-483(1), 1-7. doi: 10.1016/j.scitotenv.2014.02. 103
Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10. doi: 10.1016/j.cej.2009.09.013
Guo, M., Tongtavee, N., & Labreveux, M. (2009). Nutrient dynamics of field-weathered Delmarva poultry litter: implications for land application. Biology and Fertility of Soils, 45(8), 829-838. doi: 10.1007/s00 374-009-0397-4
Hopkins, D. W. (2008). Carbon mineralization. In M. R. Carter, & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (2a ed., pp. 621-626). Boca Raton: CRC Press.
Jeffery, L. S., Coliins, H. P., & Bailey, V. L. (2010). The effect of young biochar on soil respiration. Soil Biology & Biochemistry, 42(12), 2345-2347. doi: 10.1016/j.soilbio.2010.09.013
Khalil, M. I., Rosenani, A. B., Van Cleemput, O., Boeckx, P., Shamahuddin, J., & Fauziah, C. I. (2002). Nitrous oxide production from an Ultisol of the humid tropics treated with different nitrogen sources and moisture regimes. Biology and Fertility of Soils, 36(1), 59-65. doi: 10.1007/s00374-002-0505-1
Kuzyakov, Y., Bogomolova, I., & Glaser, B. (2014). Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biology and Biochemistry, 70(3), 229-236. doi: 10.1016/j.soilbio.2013.12.021
Laird, D. A., Brown, R. C., Amonette, J. E., & Lehmann, J. (2009). Review of the pyrolysis platform for coproducing bio-oil and bio-char. Bioproducts and Biorefining, 3(5), 547-562. doi: 10.1002/bbb.169
Lehmann, J., Gaunt, J., & Rondon, M. (2006). Biochar sequestration in terrestrial ecosystems a review. Mitigation and Adaptation Strategies for Global Change, 11(2), 403-427. doi: 10.1007/s11027-005-900 6-5
Liu, S., Zhang, Y., Zong, Y., Hu, Z., Wu, S., Zhou, J.,… Zou, J. (2016). Response of soil carbon dioxide fuxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. GCB Bioenergy, 8(2), 392-406. doi: 10.1111/gcbb.12265
Manyà, J. J. (2012). Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environmental Science & Technology, 46(15), 7939-7954. doi: 10.1021/es301029g
Ministério da Agricultura, Pecuária e Abastecimento (2017). Manual de métodos analíticos oficiais para fertilizantes e corretivos. Brasília, Secretaria de Defesa Agropecuária: MAPA.
Molina, J. A. E., Clap, C. E., & Larson, W. E. (1980). Potentially mineralizable nitrogen in soil: the simple exponential model does not apply to the first 12 weeks of incubation. Soil Science Society America Journal, 44(2), 442-443. doi: 10.2136/sssaj1980.03615995004400020054x
Murwira, H. K., Kirchmann, H., & Swift, M. J. (1990). The effect of moisture on the decomposition rate of cattle manure. Plant and Soil, 122(2), 197-199. doi: 10.1007/BF02851975
Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C.,… Schomberg, H. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 3(1), 195-206. Retrieved from http://hdl.handle.net/2047/d1001 9637
Pokharel, P., Zilong, M., & Chang, S. X. (2020). Biochar increases soil microbial biomass with changes in extra and intracellular enzyme activities: a global meta analysis. Shenyang Agricultural University, 2(1), 65-79. doi: 10.1007/s42773-020.00039-1
Qayyum, M. F., Steffens, D., Reisenauer, H. P., & Schubert, S. (2012). Kinetics of carbon mineralization of biochars compared with wheat straw in three soils. Journal of Environmental Quality, 41(4), 1210-1220. doi: 10.2134/jeq2011.0058
Ribeiro, H. M., Fangueiro, D., Alves, F., Vasconcelos, E., Coutinho, J., Bol, R., & Cabral, F. (2010). Carbon-mineralization kinetics in an organically managed cambic arenosol amended with organic fertilizers. Journal of Plant Nutrition and Soil Science, 173(1), 39-45. doi: 10.1002/jpln.v173:1
Rivas, F. A., Tabatabai, M. A., Olk, D. C., & Thompson, M. L. (2014). Kinetics of short-term carbon mineralization in roots of biofuel crops in soils. Biology and Fertility of Soils, 50(3), 527-535. doi: 10. 1007/s00374-013-0870-y
Sagrilo, E., Jeffery, S., Hoffland, E., & Kuyper, T. W. (2015). Emission of CO2 from biochar‐amended soils and implications for soil organic carbon. Global Change Biology Bioenergy, 7(6), 1294-1304. doi: 10. 1111/gcbb.12234
Santos, J. F., & Granjeiro, J. I. T. (2013). Doses de cama de galinha em relação aos componentes de produção de girassol. Tecnologia & Ciência Agropecuária, 7(2), 15-20.
Shen, Y., Zhu, L., Cheng, H., Yue, S., & Li, S. (2017). Effects of biochar application on CO2 emissions from a cultivated soil under semiarid climate conditions in northwest China. Sustainability, 9(8), 1-13. doi: 10.3390/su9081482
Shrestha, G., Traina, S. J., & Swanston, C. W. (2010). Black carbon’s properties and role in the environment: a comprehensive review. Sustainability, 2(1), 294-320. doi: 10.3390/su2010294
Sigua, G. C., Novak, J. M., Watts, D. W., Cantrell, K. B., Shumaker, P. D., Szögi, A. A., & Johnson, M. G. (2014). Carbon mineralization in two Ultisols amended with different sources and particle sizes of pyrolyzed biochar. Chemosphere, 103(5), 313-321. doi: 10.1016/j. chemosphere.2013.12.024
Silva, J. M., Alburquerque, L. S. D., Santos, T. M. C. D., Oliveira, J. U. L. D., & Guedes, E. L. F. (2013). Mineralização de vermicompostos estimada pela respiração microbiana. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 8(4), 132-135.
Sistani, K. R., Simmons, J. R., Jn-Baptiste, M., & Novak, J. M. (2019). Poultry litter, biochar, and fertilizer effect on corn yield, nutrient uptake, N2O and CO2 emissions. Environments, 6(55), 1-14. doi: 10.3390/ environments6050055
Sposito, G. (2008). The chemistry of soils (2nd ed.). New York: Oxford University Press.
Steinbeiss, S., Gleixner, G., & Antonietti, M. (2009). Effect of biochar amendment on soil carbono balance and soil microbial activity. Soil Biology and Biochemistry, 41(6), 1301-1310. doi: 10.1016/j.soilbio. 2009.03.016
Steiner, C., Melear, N., Harris, K., & Das, K. C. (2011). Biochar as bulking agent for poultry litter composting. Carbon Management, 2(3), 227-230. doi: 10.4155/cmt.11.15
Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo (3a ed. rev. e ampl.). Brasília, DF: EMBRAPA.
Wardle, D. A., Nilsson, M.-C., & Zackrisson, O. (2008). Fire-derived charcoal causes loss of forest humus. Science, 320(5876), 629. doi: 10.1126/science.1154960
Winsley, P. (2007). Biochar and bioenergy production for climate change mitigation. New Zealand Science Review, 64(1), 5-10.
Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1(56), 1-9. doi: 10.1038/ncomms1053
Zhao, L., Cao, X., Mašek, O., & Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256/257(7), 1-9. doi: 10.1016/j.jhazmat.2013.04.015
Zhao, R., Coles, N., & Wu, J. (2015). Carbon mineralization following additions of fresh and aged biochar to an infertile soil. Catena, 125(2), 183-189. doi: 10.1016/j.catena.2014.10.026
Zimmerman, A. R. (2010). Abiotic and microbial oxidation of Laboratory-Produced Black Carbon (Biochar). Environmental Science & Technology, 44(4), 1295-1301. doi: 10.1021/es903140c
Zimmerman, A. R., Gao, B., & Ahn, M. Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43(6), 1169-1179. doi: 10.1016/j.soilbio.2011.02.005
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Semina: Ciências Agrárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.