Alterações fisiológicas e crescimento de gravioleira cultivadas com águas salinas e H2O2 na fase pós-enxertia

Autores

DOI:

https://doi.org/10.5433/1679-0359.2020v41n6Supl2p3023

Palavras-chave:

Annona muricata L., Espécie reativa de oxigênio, Salinidade.

Resumo

A baixa disponibilidade da água associada as altas concentrações de sais da água de irrigação, tornou-se um dos principais desafios para produção agrícola no semiárido do Nordeste brasileiro. Dessa forma, o estudo de estratégias para viabilizar o uso da água salina na agricultura é fundamental. Assim, objetivou-se com a pesquisa avaliar alterações nas trocas gasosas, pigmentos cloroplastídicos e danos celular em gravioleira (Anonna muricata L.) na fase pós-enxertia irrigada com águas salinas e aplicação exógena de peróxido de hidrogênio (H2O2). A pesquisa foi conduzida em condições de casa de vegetação em Campina Grande-PB. Os tratamentos foram distribuídos no delineamento de blocos casualizados, em esquema fatorial 4 × 2, sendo constituídos de quatro níveis de condutividade elétrica da água - CEa (1,6; 2,4; 3,2 e 4,0 dS m-1) e duas concentrações de H2O2 (0 e 20 µM), com quatro repetições. A salinidade da água de irrigação a partir de 1,6 dS m-1 causa alterações na condutância estomática, transpiração e concentração interna de CO2 das plantas de gravioleira. A concentração de 20 µM de H2O2 mitigou os efeitos da salinidade sobre a transpiração e taxa de assimilação de CO2, além de promover a biossíntese dos pigmentos fotossintéticos e reduzir o dano celular a gravioleira, aos 150 dias após o transplantio. A aplicação exógena de 20 µM de H2O2 reduz o efeito deletério da salinidade sobre o diâmetro do caule do porta-enxerto e do enxerto das plantas de graviola irrigadas com água de 1,6 dS m-1. A aplicação exógena de 20 µM de H2O2 não é eficiente em mitigar os danos causados pela salinidade sobre o diâmetro do caule no ponto de enxertia de gravioleira.

Downloads

Não há dados estatísticos.

Biografia do Autor

Luana Lucas de Sá Almeida Veloso, Universidade Federal de Campina Grande

Discente do Curso de Doutorado do Programa de Pós-Graduação em Engenharia Agrícola, Universidade Federal de Campina Grande, UFCG, Centro de Tecnologia e Recursos Naturais, Campina Grande, PB, Brasil.

Geovani Soares de Lima, Universidade Federal de Campina Grande

Prof., Programa de Pós-Graduação em Engenharia Agrícola, Centro de Tecnologia e Recursos Naturais, UFCG, Campina Grande, PB, Brasil.

Carlos Alberto Vieira de Azevedo, Universidade Federal de Campina Grande

Prof., Programa de Pós-Graduação em Engenharia Agrícola, Centro de Tecnologia e Recursos Naturais, UFCG, Campina Grande, PB, Brasil.

Reginaldo Gomes Nobre, Universidade Federal Rural do Semi-Árido

Prof., Departamento de Ciências e Tecnologia, Universidade Federal Rural do Semi-Árido, UFERSA, Caraúbas, RN, Brasil.

André Alisson Rodrigues da Silva, Universidade Federal de Campina Grande

Discente do Curso de Doutorado do Programa de Pós-Graduação em Engenharia Agrícola, Universidade Federal de Campina Grande, UFCG, Centro de Tecnologia e Recursos Naturais, Campina Grande, PB, Brasil.

Jessica Dayanne Capitulino, Universidade Federal de Campina Grande

Discente do Curso de Doutorado do Programa de Pós-Graduação em Engenharia Agrícola, Universidade Federal de Campina Grande, UFCG, Centro de Tecnologia e Recursos Naturais, Campina Grande, PB, Brasil.

Hans Raj Gheyi, Universidade Federal de Campina Grande

Prof., Programa de Pós-Graduação em Engenharia Agrícola, Centro de Tecnologia e Recursos Naturais, UFCG, Campina Grande, PB, Brasil.

Benedito Ferreira Bonifácio, Universidade Federal de Campina Grande

Discente do Curso de Doutorado do Programa de Pós-Graduação em Engenharia Agrícola, Universidade Federal de Campina Grande, UFCG, Centro de Tecnologia e Recursos Naturais, Campina Grande, PB, Brasil.

Referências

Arnon, H. P.-A., Emam, Y., Rousta, M. J., & Ashraf, M. (2017). Salicylic acid induced salinity tolerance through manipulation of ion distribution rather than ion accumulation. Journal of Plant Growth Regulation, 36(1), 227-239. doi: 10.1007/s00344-016-9633-y

Ashraf, M. A., Rasheed, R., Hussain, I., Iqbal, M., Haider, M. Z., Parveen, S., & Sajid, M. A. (2015). Hydrogen peroxide modulates antioxidant system and nutrient relation in maize (Zea mays L.) under water-deficit conditions. Archives of Agronomy and Soil Science, 61(4), 507-523. doi: 10.1080/036503 40.2014.938644

Byuna, E.-B., Songab, H.-Y., & Kima, W. S. (2020). Polysaccharides from Annona muricata leaves protect normal human epidermal keratinocytes and mice skin from radiation-induced injuries. Radiation Physics and Chemistry, 170(1), 108672. doi: 10.1016/j.radphyschem.2019.108672

Carvalho, F. E. L., Lobo, A. K. M., Bonifacio, A., Martins, M. O., Lima, M. C., Neto, & Silveira, J. A. G. (2011). Aclimatação ao estresse salino em plantas de arroz induzida pelo pré-tratamento com H2O2. Revista Brasileira de Engenharia Agrícola e Ambiental, 15(4), 416-423. doi: 10.1590/S1415-43662011 000400014

Černý, M., Habánová, H., Berka, M., Luklová, M., & Brzobohatý, B. (2018). Hydrogen peroxide: its role in plant biology and crosstalk with signalling networks. Intanation Journal of Molecular Science, 19(9), 2812. doi: 10.3390/ijms19092812

Cova, A. M. W., Azevedo, A. D., Neto, Silva, P C. C., Menezes, R. V., Ribas, R. F., & Gheyi, H. R. (2020). Physiological and biochemical responses and fruit production of noni (Morinda citrifolia L.) plants irrigated with brackish water. Scientia Horticulturae, 260(1), 108852. doi: 10.1016/j.scienta.2019.108 852

Dito, S., & Gadallah, M. (2019). Hydrogen peroxide supplementation relieves the deleterious effects of cadmium on photosynthetic pigments and oxidative stress and improves the growth, yield and quality of pods in pea plants (Pisum sativum L.). Acta Physiologiae Plantarum, 41(113), 2-12. doi: 10.1007/s 11738-019-2901-2

Esteves, B. dos S., & Suzuki, M. S. (2008). Efeito da salinidade sobre as plantas. Oecologia Brasiliensis, 12(4), 6.

Ferreira, D. F. (2019). SISVAR: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(1), 529-535. doi: 10.1590/S1413-70542014000200001

Ge, X. M., Cai, H. L., Lei, X., Zhou, X., Yue, M., & He, J. M. (2015). Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis. The Plant Journal, 82(1), 138-150. doi. 10.1111/tpj.12799

Gondim, F. A., Gomes, E., Fº., Marques, E. C., & Prisco, J. T. (2011). Efeitos do H2O2 no crescimento e acúmulo de solutos em plantas de milho sob estresse salino. Revista Ciência Agronômica, 42(2), 373-38. doi: 10.1590/S1806-66902011000200016

Gondim, F. A., Miranda, R. de S., Gomes, E., Fº., & Prisco, J. T. (2013). A tolerância aprimorada ao sal em plantas de milho induzida por pulverização de folhas de H2O2 está associada a uma troca de gases melhorada do que ao sistema antioxidante não enzimático. Theoretical and Experimental Plant Physiology, 25(4), 251-260. doi: 10.1590/S2197-00252013000400003

Hasan, Z., Sabet, M. S., Malakouti, M. J., Mokhtassi-Bidgoli, A., & Homaee, M. (2020). Zinc and potassium fertilizer recommendation for cotton seedlings under salinity stress based on gas exchange and chlorophyll fluorescence responses South African Journal of Botany, 130(1), 155-164. doi: 10.1016/j. sajb.2019.11.032

Igiebor, F. A., Ikhajiagbe, B., & Anoliefo, G. O (2019). Growth and development of salinity-exposed rice (Oryza sativa) rhizo-inoculated with Bacillus subtilis under different pH levels. Studia Universitatis Babes-Bolyai, Biologia, 64(1), 41-53. doi: 10.24193/subbbiol.2019.2.04

Khan, M. I., Khan, N. A., Masood, A., Per, T. S., & Asgher, M. (2016). Hydrogen peroxide alleviates nickel-inhibited photosynthetic responses through increase in use efficiency of nitrogen and sulfur, and glutathione production in mustard. Frontiers Plant Science, 3(1), 44. doi: 10.3389/fpls.2016.00044

Lima, G. S. de, Dias, A. S., Souza, L. de P., Sá, F. V. da S., Gheyi, H. R., & Soares, L. A. dos A. (2018). Effects of saline water and potassium fertilization on photosynthetic pigments, growth and production of West Indian cherry. Revista Ambiente Água, 13(3), e2164. doi: 10.4136/ambi-agua.2164

Lima, G. S. de, Dias, A. S., Soares, L. A. dos A., Gheyi, H. R., Nobre, R. G., & Silva, A. A. R. da. (2019). Eficiência fotoquímica, partição de fotoassimilados e produção do algodoeiro sob estresse salino e adubação nitrogenada. Revista de Ciências Agrárias, 42(1), 211-220. doi: 10.19084/RCA18123

Liu, L., Huang, L., Lin, X., & Sun, C. (2020). Hydrogen peroxide alleviates salinity-induced damage through enhancing proline accumulation in wheat seedlings. Plant Cell Reports, 12(1), 1-9. doi: 10.1007/s002 99-020-02513-3

Medeiros, J. F. de. (1992). Qualidade de água de irrigação e evolução da salinidade nas propriedades assistidas pelo GAT nos Estados de RN, PB e CE. Dissertação de mestrado, Universidade Federal da Paraíba, Campina Grande, Brasil.

Minhas, P. S., Ramos, T. B., Ben-Gal, A., & Pereira, L. S. (2020). Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agricultural Water Management, 227(1), 105832. doi: 10.1016/j.agwat.2019.105832

Nahida, A. M. D., Ahsanul, H. O. Q., Sharmin, J., Md. Mainul, I., Firoz, A., & Shahid-ud-daula, A. F. M., & Hasanuzzaman, M. D. (2020). Methanol soluble fraction of fruits of Annona muricata possesses significant antidiarrheal activities. Heliyon, 6(1), e03112. doi: 10.1016/j.heliyon.2019.e03112

Nazir, F., Fariduddin, Q., & Khan, T. A. (2020). Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere, 1(1), 126486. doi: 10.1016/j.chemosphere.2020.126486

Nazir, F., Hussain, A., & Fariduddin, Q. (2019). Interactive role of epibrassinolide and hydrogen peroxide in regulating stomatal physiology, root morphology, photosynthetic and growth traits in Solanum lycopersicum L. under nickel stress. Environmental and Experimental Botany, 162(1), 479-495. doi: 10. 1016/j.envexpbot.2019.03.021

Novais, R. F., Neves, J. C. L., & Barros, N. F. (1991). Ensaio em ambiente controlado. In A. J. Oliveira, W. E. Garrido, J. D. Araújo, & S. Lourenço (Eds.), Métodos de pesquisa em fertilidade do solo (pp. 189-253). Brasília: EMBRAPA SEA.

Nunes, L. R. de L., Pinheiro, P. R., Cabral, F. A. S., Silva, J. B. da, & Dutra, A. S. (2019). Ascorbic acid of cowpea seeds under saline stress. Journal of Seed Science, 41(4), 441-451. doi: 10.1590/2317-1545v41 n4222276

Pailles, Y., Awlia, M., Julkowska, M., Passone, L., Zemmouri, K., Negrão, S., & Tester, M. (2020). Diverse traits contribute to salinity tolerance of wild tomato seedlings from the Galapagos Islands. Plant Physiology, 182(1), 534-546. doi: 10.1104/pp.19.00700

Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Washington: U. S. Department of Agriculture. Agriculture Handbook, 60.

Santana, E. B., Jr., Coelho, E. F., Gonçalves, K. S., & Cruz, J. L. (2019). Physiological and vegetative behavior of banana cultivars under irrigation water salinity. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(2), 82-88. doi: 10.1590/1807-1929/agriambi.v24n2p82-88

Silva, A. A. R. da, Lima, G. S. de, Azevedo, C. A. V. de, Gheyi, H. R., Souza, L. de P., & Veloso, L. L. de S. A. (2019). Gas exchanges and growth of passion fruit seedlings under salt stress and hydrogen peroxide. Pesquisa Agropecuária Tropical, 49(1), e55671. doi: 10.1590/1983-40632019v4955671

Silva, F. D. F., Rocha, M. D. S., Brito, J. F. de, Neto, Sofiatti, V., & Beltrao, N. D. M. (2011). Extravasamento de eletrólitos em algodão herbáceo submetido a alta temperatura e elevado nível de CO2. In Anais do Congresso Brasileiro do Algodão, Cotton Expor, Campina Grande, PB, Brasil, 8.

Simões, W. L., Coelho, D. S., Mesquita, A. C., Calgaro, M., & Silva, J. S. da. (2020). Physiological and biochemical responses of sugarcane varieties to salt stress. Revista Caatinga, 32(1), 1069-1076. doi: 10. 1590/1983-21252019v32n423rc

Soares, M. M., Santos, H. C. dos, Jr., Simões, M. G., Pazzin, D., & Silva, L. J. da. (2015). Estresse hídrico e salino em sementes de soja classificadas em diferentes tamanhos. Pesquisa Agropecuária Tropical, 45(4), 370-378. doi: 10.1590/1983-40632015v4535357

Sohag, A. A. M., Tahjib-Ul-Arif, M., Brestič, M., Afrin, S., Sakil, M. A., Hossain, M. T., & Hossain, M. A. (2020). Exogenous salicylic acid and hydrogen peroxide attenuates drought stress in rice. Plant Soil and Environment, 66(1), 7-13. doi: 10.17221/472/2019-PSE

Souza, T. M. A. de, Mendonça, V., Sá, F. V. da S., Silva, M. J. da, & Dourado, C. S. T. (2020). Silicato de cálcio como atenuador de estresse de sal em mudas de fruta de paixão amarela cv. BRS ga1. Revista Caatinga, 33(2), 509-517. doi: 10.1590/1983-21252020v33n223rc

Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo. Rio de Janeiro: EMBRAPA.

Veloso, L. L. S. A., Nobre, R. G., Barbosa, J. L., Lima, G. S., Melo, E. N., Gheyi, H. R., & Goncalves, E. B., Souza, C. M. A. (2018). Quality of soursop (Annona muricata L.) seedlings under different water salinity levels and nitrogen fertilization. Australian Journal of Crop Science, 12(2), 306-310. doi: 10. 21475/ajcs.18.12.02.pne892

Yuping, L., Hongbin, L., Yuanyuan, L., & Suiqi, Z. (2017). Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. The Crop Journal, 5(1), 231-239. doi: 10.1016/j.cj.2017.01.001

Downloads

Publicado

2020-11-06

Como Citar

Veloso, L. L. de S. A., Lima, G. S. de, Azevedo, C. A. V. de, Nobre, R. G., Silva, A. A. R. da, Capitulino, J. D., … Bonifácio, B. F. (2020). Alterações fisiológicas e crescimento de gravioleira cultivadas com águas salinas e H2O2 na fase pós-enxertia. Semina: Ciências Agrárias, 41(6Supl2), 3023–3038. https://doi.org/10.5433/1679-0359.2020v41n6Supl2p3023

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 3 4 > >> 

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.