Potassium and growth-promoting fungi improve the postharvest quality of grape tomato

Authors

DOI:

https://doi.org/10.5433/1679-0359.2022v43n2p675

Keywords:

Nutrient solution, Solanum lycopersicum L., Storage, Symbiosis.

Abstract

Tomato plants respond well to potassium fertilization, whose insufficiency leads to a drop in fruit production and quality. On the other hand, the association of growth-promoting fungi (GPF) with roots has been shown to be able to optimize nutrient absorption, which implies lower financial costs and a decreased risk of loss of K applied to the soil. The objective of this study was to investigate the effects of inoculation with GPF and K rates on the postharvest quality of grape tomato hybrid ‘Mascot’ grown in a hydroponic system. The plants were cultivated in a hydroponic drip system using washed and sterilized sand as substrate. They were trained with two stems, leaving three bunches per stem. The experiment was carried out in a split-split-plot arrangement in a completely randomized design with three replicates. Ripe fruits were stored for 30 days in PET containers in storage chambers at a temperature of 25 °C. After 0, 10, 20 and 30 days of storage, five fruits were collected to determine the titratable acidity (TA) and soluble solids (SS), reducing sugars (RS) and vitamin C contents. The K rates provided an increase in the quality attributes. At low K rates, inoculation with GPF led to higher TA, SS, RS and vitamin C values. Inoculation of the plants with GPF improved the postharvest preservation of the fruits, especially when the plants underwent nutritional stress during cultivation.

Author Biographies

Deise Silva Castro Pimentel Cardoso Cardoso, Universidade Federal de Viçosa

Agricultural Engineer, PhD in Plant Science, Universidade Federal de Viçosa, UFV, Viçosa, MG, Brazil.

Herminia Emilia Prieto Martinez, Universidade Federal de Viçosa

PhD Professor, Department of Agronomy, Graduate Program in Plant Science, UFV, Viçosa, MG, Brazil

Ariana Mota Pereira, Universidade Federal de Viçosa

Agricultural Engineer, PhD in Plant Science, Universidade Federal de Viçosa, UFV, Viçosa, MG, Brazil.

Maria Catarina Megumi Kasuya, Universidade Federal de Viçosa

PhD Professor, Department of Microbiology, Graduate Program in Agricultural Microbiology, UFV, Viçosa, MG, Brazil.

Paulo Roberto Cecon, Universidade Federal de Viçosa

PhD Professor, Department of Statistics, Graduate Program in Applied Statistics and Biometrics. UFV, Viçosa, MG, Brazil.

References

Achatz, B., Rüden, S., Andrade, D., Neumann, E., Pons-Kühnemann, J., Kogel, K. H., & Waller, F. (2010). Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by acceleratingplant development. Plant and Soil, 333(1), 59-70. doi: 10.1007/s11104-010-0319-0

Alvarenga, M. A. R. (2013). Tomate: produção em campo, em casa de vegetação e em hidroponia (2a ed.). Lavras MG: Universitária de Lavras.

Asaduzzaman, M. D., & Asao, T. (2018). Potassium - improvement of quality in fruits and vegetables through hydroponic nutrient management. London, UK: IntechOpen.

Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63(1), 129-140. doi: 10.1016/j.postharvbio. 2011.05.016

Bettiol, W., Astiarraga, B. D., & Luiz, A. J. B. (1999). Effectiveness of cow's milk against zucchini squash powdery mildew (Sphaerotheca fuliginea) in greenhouse conditions. Crop Protection, 18(8), 489-492, doi: 10.1016/S0261-2194(99)00046-0

Boldt, K., Pörs, Y., Haupt, B., Bitterlich, M., Kühn, C., Grimm B., & Franken, P. (2011). Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. Journal of Plant Physiology, 168(11), 256-1263. doi: 10.1016/j.jplph.2011.01.026

Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168(4), 521-530. doi: 10.1002/jpln.200420485

Chitarra, M. I. F., & Chitarra, A. B. (2005). Pós-colheita de frutos e hortaliças: fisiologia e manuseio (2a ed.). Lavras, MG: Editora UFLA.

Copetta, A., Bardi, L., Bertolone, E., & Berta, G. (2011). Fruit production and quality of tomato plants (Solanum lycopersicum L.) are affected by green compost and arbuscular mycorrhizal fungi. Plant Biosystems, 145(1), 106-115. doi: 10.1080/11263504.2010.539781

Cruz-Rus, E., Amaya, I., Sanchez-Sevilla, J. F., Botella, M. A., & Valpuesta, V. (2011). Regulation of L-ascorbic acid content in strawberry fruits. Journal of Experimental Botany, 62(12), 4191-4201. doi: 10. 1093/jxb/err122

Eloi, W. M., Duarte, S. N., & Soares, T. M. (2007). Níveis de salinidade e manejo da fertirrigação sobre características do tomateiro cultivado em ambiente protegido. Revista Brasileira de Ciências Agrárias, 2(1), 83-89. doi: 10.1590/S1806-66902013000100019

Emmanuel, O. C., & Babalola, O. O. (2020). Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiological Research¸ 239(1), 1-11 doi: 10.1016/j.micres.2020.126569

Fernandes, A. A., Martinez, H. E. P., & Fontes, P. C. R. (2002). Produtividade, qualidade dos frutos e estado nutricional do tomateiro tipo longa vida conduzido com um cacho, em cultivo hidropônico, em função das fontes de nutrientes. Horticultura Brasileira, 20(4), 564-570. doi: 10.1590/S0102-05362002000400 011

Ferraz, E. O., Evangelista, R. M., Cláudio, M. T. R., Soares, L. P. R., Silva, B. L., & Cardoso, A. I. I. (2012). Características físico-químicas em tomates cereja tipo Sweet Grape envolvidos por diferentes películas protetoras. Horticultura Brasileira, 30(2), 7115-7122.

Giovannetti, M., Avio, L., Barale, R., Ceccarelli, N., Cristofani, R., Iezzi, A., Scarpato, R. (2012). Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. British Journal of Nutrition, 107(2), 242-251. doi: 10.1017/S000711451100290X

Gonçalves, C., Rodrigues-Jasso, M. R., Gomes, N., Teixeira, J. A., & Belo, I. (2010). Adaptation of dinitrosalicylic acid method to microtiter plates. Analytical Methods, 2(12), 2046-2048. doi: 10.1039/c 0ay00525h

Hart, M., Ehret, D. L., Krumbein, A., Leung, C., Murch, S., Turi, C., & Franken, P. (2014). Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza, 25(5), 359-376. doi: 10.1007/s00572-014-0617-0

Kanai, S., Ohkura, K., Adu-Gyamfi, J., & Mohopatra, P. (2007). Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. Journal of Experimental Botany, 58(11), 2917-2928. doi: 10.1093/brain/awl024

Kawakami, F. P. C., Araujo, J. A. C., Iunck, A. V., Factor, T. L. & Cortez, G. E. (2007). Manejo da fertirrigação em função da condutividade elétrica da solução nutritiva drenada no cultivo de tomate cereja sob ambiente protegido. Anais do Congresso Brasileiro de Olericultura, Vitória da Conquista, BA, Brasil, 47.

Liu, K., Zhang, T. Q., Tan, C. S., & Astatkie, T. (2011). Responses of fruit yield and quality of processing tomato to drip-irrigation and fertiizers phosphorus and potassium. Agronomy Journal, 103(5), 330-1345. doi: 10.2134/agronj2011.0111

Marschner, P. (2012). (Ed). Mineral nutrition of higher plants (3nd ed.). London, UK: Elsevier.

McCready, R. M., Guggolz, J., Silveira, V., & Owens, H. S. (1950). Determination of starch and amylase in vegetables. Analytic Chemistry, 22(9), 1156-1158. doi: 10.1021/ac60045a016

Mditshwa, A., Magwaza, L., Tefay, S. Z., & Opara, U. L. (2017). Postharvest factors affecting vitamin C content of citrus fruits: a review. Scientia Horticulturae, 218(1), 95-104. doi: 10.1016/j.scienta.2017.02. 024

Shui, G., & Leong, L. (2002). Separation and determination of organic acids and phenolic compounds in fruit juice and drinks by high performance liquid chromatography. Journal of Chromatography A 977(1), 89-96. doi: 10.1016/S0021-9673(02)01345-6

Sonntag, F., Naumann, M., Pawelzik, E., & Smit, I. (2019). Improvement of cocktail tomato yield and consumer-oriented quality traits by potassium fertilization is driven by the cultivar. Journal of the Science of Food and Agriculture, 99(7), 3350-3358. doi: 10.1002/jsfa.9552

Strohecker, R., & Henning, H. M. (1967). Análisis de vitaminas. Madrid ES: Paz Montalvo.

Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6a ed.). Porto Alegre, RS: Artmed.

Varma, A., Bakshi, M., Lou, B., Hartmann, A., & Oelmueller, R. (2012). Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agricultural Research, 1(2), 117-131. doi: 10.1007/s40003-012-0019-5

Wang, H., Zheng, J., Ren, X., Yu, T., Varma, A., Lou, B., & Zheng, X. (2015). Effects of Piriformospora indica on the growth, fruit quality and interaction with Tomato yellow leaf curl virus in tomato cultivars susceptible and resistant to TYCLV. Plant Growth Regulation, 76(3), 303-313. doi: 10.1007/s10725-015-0025-2

Yadav, K., Aggarwal, A., & Singh, N. (2013). Arbuscular mycorrhizal fungi (AMF) induced acclimatization, growth enhancement and colchicine content of micropropagated Gloriosa superba L. plantlets. Industrial Crops and Products, 45(1), 88-93. doi: 10.1016/j.indcrop.2012.12.00

Downloads

Published

2022-02-25

How to Cite

Cardoso, D. S. C. P. C., Martinez, H. E. P., Pereira, A. M., Kasuya, M. C. M., & Cecon, P. R. (2022). Potassium and growth-promoting fungi improve the postharvest quality of grape tomato. Semina: Ciências Agrárias, 43(2), 675–692. https://doi.org/10.5433/1679-0359.2022v43n2p675

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

You may also start an advanced similarity search for this article.