Biomass productivity of Chlorella vulgaris cultivated in fish and dairy cattle wastewaters
DOI:
https://doi.org/10.5433/1679-0359.2021v42n3p1369Keywords:
Chemical composition, Runoff, Microalgae.Abstract
The biomass productivity and nutrient composition of microalgae, such as Chlorella vulgaris, depend on the cultivation process and the nutrient content of growth media. Thus, in this study aimed to investigate the biomass productivity of C. vulgaris cultivated in fish and dairy cattle wastewaters. Thirty wastewater samples (2.5 L) were collected from system of production. Microalgae were cultivated in Erlenmeyer flasks containing 10 mL of microalgae and 1,790 mL of wastewater under constant light of 5,000 lux for 16 days at 25 ± 2.0 °C. Wastewater samples differed in composition. Biomass productivity was 47 % higher (P<0.0001) in dairy cattle than in fish wastewater, reaching 67.61 g m?3 day?1 (dry matter basis, DM) when compared by Student’s t-test (P<0.05). Cultivation media also had an effect on biomass chemical composition. The C. vulgaris grown in dairy cattle wastewater was higher in crude protein and ash contents (359.6 g kg?1 DM and 230.4 g kg?1 DM, respectively), whereas microalgae grown in fish wastewater had higher nitrogen-free extract content (347.8 g kg?1 DM). Crude fat content did not vary greatly (mean of 313.15 g kg?1 DM). The pH (8.0 – 8.7) and ammonia concentration (0.07 to 0.4 mg L?1) in fish wastewater was stable throughout the 16-day experimental period. In dairy wastewater, pH increased up (6.3 to 8.9) to the fourth day and remained constant thereafter, and ammonia concentration increased up (24.3 to 28.7 mg L?1) to the eighth day and then it declined (2.1 mg L?1). The C. vulgaris was successfully grown in both wastewaters, but productivity was higher in dairy cattle wastewater.
Downloads
References
Association of Official Analytical Chemists (2005). Official methods of analysis of AOAC international (18nd ed.). Gaithersburg, Maryland, USA. AOAC International.
Campos, A. T., Ferreira, W. A., Paccola, A. A., Lucas, J. Jr., Cardoso, R. M., & Campos, A. T. (2002). Aerobic biological treatment and recycling of bovine manure in intensive system of milk production. Ciência e agrotecnologia, 26(2), 426-438.
Cyrino, J. E. P., Bicudo, A. J. A., Sado, R. Y., Borghesi, R., & Dairiki, J. K. (2010). Fish farming and the environment-the use of environmental friendly feeds in fish culture. Revista Brasileira de Zootecnia, 39(Supplement), 68-87. doi: 10.1590/S1516-35982010001300009
Gonçalves, A. L., Pires, J. C., & Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24(part B), 403-415. doi: 10.1016/j.algal.2016.11.008
Gouveia, L., Graça, S., Sousa, C., Ambrosano, L., Ribeiro, B., Botrel, E. P.,... Silva, C. M. (2016). Microalgae biomass production using wastewater: treatment and costs: scale-up considerations. Algal Research, 16, 167-176. doi: 10.1016/j.algal.2016.03.010
Hach, D. R. (1996). Spectrophotometer procedures manual. Loveland, CO, USA: HACH Company.
Halfhide, T., Åkerstrøm, A., Lekang, O. I., Gislerød, H. R., & Ergas, S. J. (2014). Production of algal biomass, chlorophyll, starch and lipids using aquaculture wastewater under axenic and non-axenic conditions. Algal Research, 6 (part B), 152-159. doi: 10.1016/j.algal.2014.10.009
Li, T., Xu, J., Gao, B., Xiang, W., Li, A., & Zhang, C. (2016). Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies. Algal Research, 16(1), 481-491. doi: 10.1016/j.algal.2016.04.008
Lourenço, S. O., Barbarino, E., Lavín, P. L., Lanfer Marquez, U. M., & Aidar, E. (2004). Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. European Journal of Phycology, 39(1), 17-32. doi: 10.1080/0967026032000157156
Moreno-Garcia, L., Gariépy, Y., Barnabé, S., & Raghavan, G. S. V. (2019). Effect of environmental factors on the biomass and lipid production of microalgae grown in wastewaters. Algal Research, 41(1), 101521. doi: 10.1016/j.algal.2019.101521
Sukačová, K., Búzová, D., Trávníček, P., Červený, J., Vítězová, M., & Vítěz, T. (2019). Optimization of microalgal growth and cultivation parameters for increasing bioenergy potential: Case study using the oleaginous microalga Chlorella pyrenoidosa Chick (IPPAS C2). Algal Research, 40(1), 101519. doi: 10. 1016/j.algal.2019.101519
Tibbetts, S. M., Whitney, C. G., MacPherson, M. J., Bhatti, S., Banskota, A. H., Stefanova, R., & McGinn, P. J. (2015). Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. Algal Research, 11(1), 435-447. doi: 10.1016/j.algal. 2014.11.011
Watanabe, A. (1960). List of algal strains in collection at the Institute of Applied Microbiology, University of Tokyo. The Journal of General and Applied Microbiology, 6(4), 283-292. doi: https://doi.org/10. 2323/jgam.6.283
Wild, K. J., Trautmann, A., Katzenmeyer, M., Steingaß, H., Posten, C., & Rodehutscord, M. (2019). Chemical composition and nutritional characteristics for ruminants of the microalgae Chlorella vulgaris obtained using different cultivation conditions. Algal Research, 38(1), 101385. doi: 10.1016/j.algal. 2018.101385
Yeh, K. L., & Chang, J. S. (2012). Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology, 105(1), 120-127. doi: 10.1016/j.biortech.2011.11.103
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Semina: Ciências Agrárias
![Creative Commons License](http://i.creativecommons.org/l/by-nc/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.