Pressão de pré-consolidação de Latossolos gibbsítico e caulinítico sob sistema de multipraticas conservacionista no cultivo cafeeiro
DOI:
https://doi.org/10.5433/1679-0359.2021v42n3p1049Palavras-chave:
Caulinita, Compactação do solo, Gesso agrícola, Gibbsita, Modelo de regressão linear mista.Resumo
Nosso objetivo foi analisar o impacto de um sistema de manejo do solo com multi-práticas conservacionistas para o cultivo cafeeiro em solos tropicais (LATOSSOLO VERMELHO-AMARELO caulinítico/ kaolinitic Haplustox and LATOSSOLO VERMELHO gibbsítico/ gibbsitic Acrustox) em Minas Gerais, Brasil. Na área experimental, o manejo do solo incluiu um conjunto de multi-práticas conservacionistas por mais de 3,5 anos. Amostras de solo foram coletadas em 0-5; 10-15; e profundidades de 20 a 25 cm em duas posições: linha e entrelinha. As propriedades físicas e mecânicas do solo foram determinadas, concentrando-se principalmente na modelagem da compactação (estresse de pré-consolidação versus tensão matricial). Para fins de análise, foi considerado o delineamento experimental de parcelas subsubdivididas. Foi ajustado o modelo de regressão linear mista (RLM), bem como o teste F de Wald (P < 0,05). Melhorias na qualidade física do solo em ambos os Latossolos foi observada na linha de plantio. Os efeitos do sistema de manejo multi-práticas usado após 3,5 anos de cultivo associado ao maior conteúdo de gibbsita podem promover uma nova organização da estrutura do solo revelada pelo RLM, que resulta em solos mais resilientes (na entrelinha), melhorando a resistência às pressões externas aplicadas ao Latossolo gibbsítico. No geral, os resultados aqui apresentadas estão de acordo com as tendências globais em direção a práticas conservacionistas que podem aliviar a compactação do solo em sistemas agrícolas e manter a sustentabilidade ambiental.Downloads
Referências
Ajayi, A. E., Dias, M. S., Jr., Curi, N., Gontijo, I., Araújo, C. F., Jr., & Vasconcelos, A. I., Jr. (2009b). Relation of strength and mineralogical attributes in Brazilian Latosols. Soil & Tillage Research, 102(1), 14-18. doi: 10.1016/j.still.2008.05.013
Ajayi, A. E., Dias, M. S., Jr., Curi, N., Okunola, A., Souza, T. T. T., & Pires, B. S. (2010). Assessment of vulnerability of Oxisols to compaction in the Cerrado region of Brazil. Pedosphere, 20(2), 252-260. doi: 10.1016/S1002-0160(10)60013-6
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalvez, J. L. M., & Sparovek, G. (2014). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. doi: 10.1127/0941-2948/2013/ 0507
An, J., Zhang, Y., & Yu, N. (2015). Quantifying the effect of soil physical properties on the compressive characteristics of two arable soils using uniaxial compression tests. Soil & Tillage Research, 145(1), 216-223. doi: 10.1016/j.still.2014.09.002
Andrade, M. L. C., Tassinari, D., Dias, M. S., Jr., Martins, R. P., Rocha, W. W., & Souza, Z. R. (2017). Soil compaction caused by harvest and logging operations in eucalyptus forests in coarse-textured soils from northeastern Brazil. Ciência e Agrotecnologia, 41(2), 191-200. doi: 10.1590/1413-70542017412036216
Barbosa, S. M., Silva, B. M., Oliveira, G. C., Benevenute, P. A. N., Silva, R. F., Curi, N.,... Pereira, V. M. (2020). Deep furrow and additional liming for coffee cultivation under first year in a naturally dense Inceptisol. Geoderma, 357(1), 113934. doi: 10.1016/j.geoderma.2019.113934
Bengouch, A. G., & Mullins, C. E. (1990). Mechanical impedance to root growth: a review of experimental techniques and root growth responses. European Journal of Soil Science, 41(3), 341-358. doi: 10.1111/j. 1365-2389.1990.tb00070.x
Bernardes, T., Moreira, M. A., Adami, M., Giarolla, A., & Rudorff, B. F. T. (2012). Monitoring biennial bearing effect on coffee yield using MODIS Remote Sensing Imagery. Remote Sensing, 4, 2492-2509. doi: 10.1109/IGARSS.2012.6350499
Blake, G. R., & Hartge, K. H. (1986). Partycle density. In A. Klute (Ed.), Methods of soil analysis (2nd ed.), American Society of Agronomy, Agronomy Monographs 9(1). Methods of soil analysis, Madison, Wisconsin (pp. 377-382).
Bonetti, J. A., Anghinoni, I., Moraes, M. T., & Fink, J. R. (2017). Resilience of soils with different texture, mineralogy and organic matter under long-term conservation systems. Soil & Tillage Research, 174, 104-112. doi: 10.1016/j.still.2017.06.008
Carducci, C. E., Oliveira, G. C., Curi, N., Heck, R. J., & Rossoni, D. F. (2014). Scaling of pores in 3D images of Latosols (Oxisols) with contrasting mineralogy under a conservation management system. Soil Research, 52(3), 231-243. doi: 10.1071/SR13238
Carducci, C. E., Oliveira, G. C., Curi, N., Heck, R. J., Rossoni, D. F., Carvalho, T. S. de, & Costa, A. L. (2015). Gypsum effects on the spatial distribution of coffee roots and the pores system in oxidic Brazilian Latosol. Soil & Tillage Research, 145(1), 171-180. doi: 10.1016/j.still.2014.09.015
Carducci, C. E., Oliveira, G. C., Zeviani, W. M., Lima, V. M. P., & Serafim, M. E. (2013). Bimodal pore distribution on soils under conservation management system for coffee crop. Engenharia Agrícola, 33(2), 291-302. doi: 10.1590/S0100-69162013000200008
Companhia Nacional de Abastecimento (2020). Acompanhamento da safra brasileira Café safra 2020, primeiro levantamento. Recuperado de https://www.conab.gov.br/info-agro/safras/cafe
Danielson, R. E., & Sutherland, P. L. (1986). Porosity. Methods of soil analysis: Part 1 physical and mineralogical methods, (2nd ed.). In: A. Klute (Ed.), American Society of Agronomy, Agronomy Monographs 9(1). Methods of soil analysis, Madison, Wisconsin (pp.443-461).
Day, P. R. (1965). Particle fractionation and particle size analysis. In: C. A. Black, D. D. Evans, L. E. Ensminger, J. L. White, F. E. Clark (Eds.), Methods of soil analysis. Madison, Wisconsin (pp. 545-567).
Dexter, A. R., & Richard, G. (2009). Tillage of soils in relation to their bi-modal pore size distributions. Soil & Tillage Research, 103(1), 113-118. doi: 10.1016/j.still.2008.10.001
Dias, M. S., Jr., & Pierce, F. J. (1995). A simple procedure for estimating preconsolidation pressure from soil compression curves. Soil Technology, 8(2), 139-151. doi: 10.1016/0933-3630(95)00015-8
Eliasson, L. (2005). Effects of forwarder tyre pressure on rut formation and soil compaction. Silva Fennica, 39(4), 549-557. doi: 10.14214/sf.366
Ferreira, C. J. B., Tormena, C. A., Severiano, E. C., Zotarelli, L., & Bertiolo, E., Jr. (2020). Soil compaction influences soil physical quality and soybean yield under long-term no-tillage. Archives of Agronomy and Soil Science, 1(1), 1-14. doi: 10.1080/03650340.2020.1733535
Flávio, J., Neto, Severiano, E. C., Costa, K. A. P., Guimarães Junnyor, W. S., Gonçalves, W. G., & Andrade, R. (2015). Biological soil loosening by grasses from genus Brachiaria in croplivestock integration. Acta Scientiarum: Agronomy, 37(3), 375-383. doi: 10.4025/actasciagron.v37i3.19392
Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of American Journal, 44(5), 892-898. doi: 10.2136/sssaj1980.036159950044 00050002x
Götze, P., Rücknagel, J., Jacobsm, A., Märländer, B., Kohn, H. J., & Christen, O. (2016). Environmental impacts of different crop rotations in terms of soil compaction. Journal of Environmental Management, 181(1), 54-63. doi: 10.1016/j.jenvman.2016.05.048
Guimarães Júnnyor, W. S., Diserens, E., Maria, I. C. de, Araujo, C. F., Jr., Farhate, C. V. V., & Souza, Z. M. (2019). Prediction of soil stresses and compaction due to agricultural machines in sugarcane cultivation systems with and without crop rotation. Science of Total Environmental, 681(3), 424-434. doi: 10.1016/j. scitotenv.2019.05.009
Horn, R., Vossbrink, J., Peth, S., & Becker, S. (2007). Impact of modern forest vehicles on soil physical properties. Forest Ecology and Management, 248(1-2), 56-63. doi: 10.1016/j.foreco.2007.02.037
Iori, P., Dias, M. S., Jr., Ajayi, A. E., Guimarães, P. T. G., Pais, P. S. M., & Andrade, M. L. C. (2013). Comparison of field and laboratory models of the load bearing capacity in coffee plantations. Ciência e Agrotecnologia, 37(2), 130-137. doi: 10.1590/S1413-70542013000200003
IUSS Working Group WRB (2014). World reference base for soil resources 2014 (2nd ed.). (World Soil Resources Report, n. 106. F.). Rome: FAO.
Keller, T., Berli, M., Ruiz, S., Lamandé, M., Arvidsson, J., Schjønning, P., & Selvadurai, A. P. S. (2014). Transmission of vertical soil stress under agricultural tyres: comparing measurements with simulations. Soil & Tillage Research, 140(7), 106-117. doi: 10.1016/j.still.2014.03.001
Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38(4), 963-974. doi: 10.2307/2529876
Liu, Q., Liu, B., Zhang, Y., Lin, Z., Zhu, T., Sun, R.,... Xie, Z. (2017). Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions? Soil Biology and Biochemistry, 104(1), 8-17. doi: 10.1016/j.soilbio.2016.10.006
Mazurana, M., Levien, R., Inda, A. V., Jr., Conte, O., Bressani, L. A., & Müller, J. (2017). Soil susceptibility to compaction under use conditions in southern Brazil. Ciência e Agrotecnologia, 41(1), 60-71. doi: 10. 1590/1413-70542017411027216
Pedrotti, A., Ferreira, M. M., Curi, N., Silva, M. L. N., Lima, J. M., & Carvalho, R. (2003). Relação entre atributos físicos, mineralogia da fração argila e formas de alumínio no solo. Revista Brasileira de Ciência do Solo, 27(1), 1-9. doi: 10.1590/S0100-06832003000100001
Peixoto, D. S., Silva, B. M., Oliveira, G. C., Moreira, S. G., Silva, F., & Curi, N. (2019). A soil compaction diagnosis method for occasional tillage recommendation under continuous no tillage system in Brazil. Soil & Tillage Research, 194(11), 104307. doi: 10.1016/j.still.2019.104307
Pirnazarov, A., & Sellgren, U. (2015). Reduced testing and modelling of the bearing capacity of rooted soil for wheeled forestry machines. Journal of Terramechanics, 60(1), 23-31. doi: 10.1016/j.jterra.2015.05. 002
R Core Team (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
Resende, M., Bahia, A. F. C., Fº., & Braga, J. M. (1987). Clay mineralogy of Latosols estimated by chemical allocation of total oxides contente by H2SO4 digestion. Revista Brasileira de Ciência do Solo, 11(1), 17-23.
Reynolds, W. D., Drury, C. F., Tan, C. S., Fox, C. A., & Yang, X. M. (2009). Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma, 152(3-4), 252-63. doi: 10. 1016/j.geoderma.2009.06.009
Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R.,... Cunha, T. J. F. (2018). Brazilian soil classification (5nd ed. rev. and exp.). Brasília, DF: EMBRAPA.
Santos, W. J. R., Silva, B. M., Oliveira, G. C., Volpato, M. M. L., Lima, J. M., Curi, N., & Marques, J. J. (2014). Soil moisture in the root zone and its relation to plant vigor assessed by remote sensing at management scale. Geoderma, 221-222(6), 91-95. doi: 10.1016/j.geoderma.2014.01.006
Severiano, E. C., Oliveira, G. C., Dias, M. S., Jr., Curi, N., Costa, K. A. P., & Carducci, C. E. (2013). Preconsolidation pressure, soil water retention characteristics, and texture of Latosols in the Brazilian Cerrado. Australian Soil Research, 51(3), 193-202. doi: 10.1071/SR12366
Shahgholi, G., & Abuali, M. (2015). Measuring soil compaction and soil behavior under the tractor tire using strain transducer. Journal of Terramechanics, 59(1), 19-25. doi: 10.1016/j.jterra.2015.02.007
Silva, B. M., Oliveira, G. C., Serafim, M. E., Silva, E. A., Ferreira, M. M., Norton, L. D., & Curi, N. (2015). Critical soil moisture range for a coffee crop in an oxidic latosol as affected by soil management. Soil & Tillage Research, 154(1), 103-113. doi: 10.1016/j.still.2015.06.013
Silva, B. M., Oliveira, G. C., Serafim, M. E., Silva, E. A., Guimarães, P. T. G., Melo, L. B. B.,... & Curi, N. (2019). Soil moisture associated with least limiting water range, leaf water potential, initial growth and yield of coffee as affected by soil management system. Soil & Tillage Research, 189(1), 36-43. doi: 10. 1016/j.still.2018.12.016
Silva, E. A., Oliveira, G. C., Carducci, C. E., Silva, B. M., Oliveira, L. M., & Costa, J. C. (2013). Increasing doses of agricultural gypsum, aggregate stability and organic carbon in Cerrado Oxisol under Coffee crop. Revista Ciências Agrárias-Amazonian Journal of Agricultural and Environmental Sciences, 56(1), 25-32. doi: 10.4322/rca.2013.012
Silva, E. A., Silva, S. H. G., Oliveira, G. C., & Carducci, C. E. (2016b). Root spatial distribution in coffee plants of different ages under conservation management system. African Journal of Agriculture Research, 11(49), 4970-4978. doi: 10.5897/AJAR2016.11356
Silva, R. B., Iori, P., Souza, Z. M., Pereira, D. M. G., Vischi, O. J., Fº., & Silva, F. A. M. (2016a). Contact pressures and the impact of farm equipment on Latosol with the presence and absence of sugarcane straw. Ciência e Agrotecnologia, 40(3), 265-278. doi: 10.1590/1413-70542016403001716
Skorupa, A. L. A., Tassinari, D., Silva, S. H. G., Poggere, G. C., Zinn, Y. L., & Curi, N. (2016). Xanthic- and Rhodic-Acrudoxes under cerrado vegetation: differential internal drainage and covarying micromorphological properties. Ciência e Agrotecnologia, 40(4), 443-453. doi: 10.1590/1413-70542016 404019916
Soil Survey Staff (2014). Keys to soil taxonomy (12nd ed.). Washington, DC: USDA-Natural Resources Conservation Service.
Taylor, D. W. (1948). Fundamentals of soil mechanics. New York: John Wiley & Sons.
Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo (3nd ed. rev. and ampl.). Brasília, DF: EMBRAPA. Tollefson, J. (2010). Food: the global farm. Nature, 466(29), 554-556. doi: 10.1038/466554a
Vollant-Tuduri, N., Bruand, A., Brossard, M., Balbino, L. C., Oliveira, M. I. L., & Martins, É. S. (2005). Mass proportion of microaggregates and bulk density in a Brazilian clayey Oxisol. Soil Science Society of American Journal, 69(5), 1559-1564. doi: 10.2136/sssaj2003.0344
Zinn, Y. L., Lal, R., Bigham, J. M., & Resck, D. V. S. (2007). Edaphic controls on soil organic carbon retention in the Brazilian Cerrado: texture and mineralogy. Soil Science Society of American Journal, 71(4), 1204-1214. doi: 10.2136/sssaj2006.0014
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Semina: Ciências Agrárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.