Fermentation parameters and nutritional value of olive cake silage
DOI:
https://doi.org/10.5433/1679-0359.2024v45n6p1695Keywords:
In situ digestibility, Olea europea, Olive oil, Nutritional value, Total phenols.Abstract
The aim of this research was to improve the fermentation parameters and the nutritional value of olive cake silage (Olea europaea “Arbequina”) in natura through two periods of rest of the material after the extraction of olive oil and/or with the addition of levels of ground corn. The matter was ensiled in two times after extraction (zero and 48 hours), using ground corn grain on dry matter basis, as an additive in the levels: 0, 5 and 10% of ensiled olive cake wet matter. The design was completely randomized, and the silages tested for fermentation characteristics, conservation, concentration of phenolic compounds, chemical composition and nutritive value. The silages did not differ in non-protein nitrogen, silica and NDF digestibility. At the zero time, it presented higher values of buffering capacity, total phenols, total tannins (TT) and lower dry matter compared to silages made from silage after 48 h. Silages containing contents 10% of corn compared with non-corn add, had higher digestibility, NDT content and lower pH and EE. The inclusion of corn improved the fermentation characteristics and the nutritional value of the fresh-olive cake silages. The ensilage technique has been shown to be an alternative to preserve the important characteristics of olive cake.
Downloads
References
Abarghoei, M., Rouzbehan, Y., & Alipour, D. (2011). Nutritive value and silage characteristics of whole and partly stoned olive cakes treated with molasses. Journal of Agricultural Science and Technology, 13(5), 709-716.
Ali, M. F., & Tahir, M. (2021). An overview on the factors affecting water-soluble carbohydrates concentration during ensiling of silage. Journal of Plant and Environment, 3(1), 63-80. doi: 10.33687/jpe.003.01.3702 DOI: https://doi.org/10.33687/jpe.003.01.3702
Association of Official Analytical Chemistry (2019). Official methods of analysis (21nd ed.). AOAC.
Besharati, M., Maggiolino, A., Palangi, V., Kaya, A., Jabbar, M., Eseceli, H., De Palo, P., & Lorenzo, J. M. (2022). Tannin in ruminant nutrition: Review. Molecules, 27(23), 8273. doi: 10.3390/molecules27238273 DOI: https://doi.org/10.3390/molecules27238273
Bezerra, H. F. C., Santos, E. M., Olliveira, J. S. de, Carvalho, G. G. P. de, Cassuce, M. R., Perazzo, A. F., Freitas, D. S. S., & Silva Santos, V. da. (2015). Degradabilidade ruminal in situ de silagens de capim-elefante aditivadas com farelo de milho e inoculante da microbiota autóctone. Revista Brasileira de Saúde e Produção Animal, 16(2), 265-277. doi: 10.1590/S1519-99402015000200001 DOI: https://doi.org/10.1590/S1519-99402015000200001
Bionda, A., Lopreiato, V., Crepaldi, P., Chiofalo, V., Fazio, E., Oteri, M., Amato, A., & Liotta, L. (2022). Diet supplemented with olive cake as a model of circular economy: Metabolic and endocrine responses of beef cattle. Frontiers in Sustainable Food Systems, 6(2022), 1077363. doi: 10.3389/fsufs.2022.1077363 DOI: https://doi.org/10.3389/fsufs.2022.1077363
Cardoso, L. G. V., Barcelos, M. F. P., Oliveira, A. F. de, Pereira, J. A. R., Abreu, W. C., Pimentel, F. A., Cardoso, M. G., & Pereira, M. C. A. (2010). Physicochemical characteristics and fatty acids profile of olive oils from different varieties of olive tree in southern Minas Gerais – Brazil. Semina: Ciências Agrárias, 31(1), 127-136. doi: 10.5433/1679-0359.2010v31n1p127 DOI: https://doi.org/10.5433/1679-0359.2010v31n1p127
Castellani, F., Vitali, A., Bernardi, N., Marone, E., Palazzo, F., Grotta, L., & Martino, G. (2017). Dietary supplementation with dried olive pomace in dairy cows modifies the composition of fatty acids and the aromatic profile in milk and related cheese. Journal of Dairy Science, 100(11), 8658-8669. doi: 10.3168/jds.2017-12899 DOI: https://doi.org/10.3168/jds.2017-12899
Chiofalo, V., Liotta, L., Lo Presti, V., Gresta, F., Di Rosa, A. R., & Chiofalo, B. (2020). Effect of dietary olive cake supplementation on performance, carcass characteristics, and meat quality of beef cattle. Animals, 10(7), 1176. doi: 10.3390/ani10071176 DOI: https://doi.org/10.3390/ani10071176
Das, A. K., Islam, M. N., Faruk, M. O., Ashaduzzaman, M., & Dungani, R. (2020). Review on tannins: extraction processes, applications and possibilities. South African Journal of Botany, 135(2020), 58-70. doi: 10.1016/j.sajb.2020.08.008 DOI: https://doi.org/10.1016/j.sajb.2020.08.008
Dentinho, M. T. P., Paulos, K., Costa, C., Costa, J., Fialho, L., Cachucho, L., Portugal, A. P., Almeida, J., Rehan, I., Belo, A. T., Jerónimo, E., & Santos-Silva, J. (2023). Silages of agro-industrial by-products in lamb diets – effect on growth performance, carcass, meat quality and in vitro methane emissions. Animal Feed Science and Technology, 298(2023), 115603. doi: 10.1016/j.anifeedsci.2023.115603 DOI: https://doi.org/10.1016/j.anifeedsci.2023.115603
Dijkstra, J., van Gastelen, S., Dieho, K., Nichols, K., & Bannink, A. (2020). Review: rumen sensors: data and interpretation for key rumen metabolic processes. Animal, 14(Supp. 1), 176-186. doi: 10.1017/S1751731119003112 DOI: https://doi.org/10.1017/S1751731119003112
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. doi: 10.1021/ac60111a017 DOI: https://doi.org/10.1021/ac60111a017
Goering, H. K., & Van Soest, P. J. (1975). Forage fiber analysis: apparatus, reagents, procedures and some applications. Agricultural Handbook.
Habeeb, A. A. M., Gad, A. E., EL-Tarabany, A. A., Mustafa, M. M., & Atta, M. A. A. (2017). Using of olive oil by-products in farm animals feeding. International Journal of Scientific Research in Science and Technology, 3(6), 57-68.
Hadhoud, F. I., Shaaban, M. M., Abd El Tawab, A. M., Khattab, M. S. A., Ebeid, H. M., Gouda, G. A., & Abdo, M. M. (2020). Olive cake silage as alternative roughage for ruminant: effect on rumen degradability and in vitro gas production. Egyptian Journal of Nutrition and Feeds, 23(2), 265-272. DOI: https://doi.org/10.21608/ejnf.2020.115092
Hall, M. B. (2003). Challenges with non-fiber carbohydrate methods. Journal of Animal Science, 81(12), 3226-3232. doi: 10.2527/2003.81123226x DOI: https://doi.org/10.2527/2003.81123226x
Jobim, C. C., Nussio, L. G., Reis, R. A., & Schmidt, P. (2007). Avanços metodológicos na avaliação da qualidade da forragem conservada. Revista Brasileira de Zootecnia, 36(Suppl.), 101-119. doi: 10.1590/S1516-35982007001000013 DOI: https://doi.org/10.1590/S1516-35982007001000013
Khwaldia, K., Attour, N., Mathhes, J., Beck, L., & Schmid, M. (2022). Olive byproducts and their bioactive compounds as avaluable source for food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1218-1253. doi: 10.1111/1541-4337.12882 DOI: https://doi.org/10.1111/1541-4337.12882
Kung, L., Jr., Shaver, R. D., Grant, R. J., & Schmidt, R. J. (2018). Silage review: interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101(5), 4020-4033. doi: 10.3168/jds.2017-13909 DOI: https://doi.org/10.3168/jds.2017-13909
Li, M. M., & Hanigan, M. D. (2020). A revised representation of ruminal pH and digestive reparameterization of the Molly cow model. Journal of Dairy Science, 103(12), 11285-11299. doi: 10.3168/jds.2020-18372 DOI: https://doi.org/10.3168/jds.2020-18372
Licitra, G., Hernandez, T. M., & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57(4), 347-358. doi: 10.1016/0377-8401(95)00837-3 DOI: https://doi.org/10.1016/0377-8401(95)00837-3
Lopez-Corona, A. V., Valencia-Espinosa, I., González-Sánchez, F. A., Sánchez-López, A. L., Garcia-Amezquita, L. E., & Garcia-Varela, R. (2022). Antioxidant, anti-inflammatory and cytotoxic activity of phenolic compound family extracted from raspberries (Rubus idaeus): a general review. Antioxidants, 11(6), 1192. doi: 10.3390/antiox11061192 DOI: https://doi.org/10.3390/antiox11061192
Luciano, G., Pauselli, M., Servili, M., Mourvaki, E., Serra, A., Monahan, F. J., Lanza, M., Priolo, A., Zinnai, A., & Mele, M. (2013). Dietary olive cake reduces the oxidation of lipids, including cholesterol, in lamb meat enriched in polyunsaturated fatty acids. Meat Science, 93(3), 703-714. doi: 10.1016/j.meatsci.2012.11.033 DOI: https://doi.org/10.1016/j.meatsci.2012.11.033
Makkar, H. P. S. (2000). Quantification of tannins in tree foliage - a laboratory manual. FAO / IAEA.
Matias, A. G. S., Araujo, G. G. L., Campos, F. S., Moraes, S. A., Gois, G. C., Silva, T. S., Emerenciano, J. V., Neto, & Voltolini, T. V. (2020). Fermentation profile and nutritional quality of silages composed of cactus pear and maniçoba for goat feeding. The Journal of Agricultural Science, 158, 304-312. doi: 10.1017/S0021859620000581 DOI: https://doi.org/10.1017/S0021859620000581
Muck, R. E., Nadeau, E. M. G., McAllister, T. A., Contreras-Govea, F. E., Santos, M. C., & Kung, L., Jr. (2018). Silage review: recent advances and future uses of silage aditives. Journal of Dairy Science, 101(5), 3980-4000. doi: 10.3168/jds.2017-13839 DOI: https://doi.org/10.3168/jds.2017-13839
National Research Council (2001). Nutrient requirements of dairy cattle (7nd rev. ed.).
National Academy of Science. Pang, D., Yan, T., Trevisi, E., & Krizsan, J. S. (2018). Effect of grain- or by-product-based concentrate fed with early- or late-harvested first-cut grass silage on dairy cow performance. Journal of Dairy Science, 101(8), 7133-7145. doi: 10.3168/jds.2018-14449 DOI: https://doi.org/10.3168/jds.2018-14449
Playne, M. J., & McDonald, P. (1996). The buffering constituents of herbage and of silage. Journal of the Science of Food and Agriculture, 17(6), 264-268. doi: 10.1002/jsfa.2740170609 DOI: https://doi.org/10.1002/jsfa.2740170609
Russo, N., Floridia, V., D’Alessandro, E., Lopreiato, V., Pino, A., Chiofalo, V., Caggia, C., Liotta, L., & Randazzo, C. L. (2023). Influence of olive cake dietary supplementation on fecal microbiota of dairy cows. Frontiers in Microbiology, 14(2023), 1137452. doi: 10.3389/fmicb.2023.1137452 DOI: https://doi.org/10.3389/fmicb.2023.1137452
Selim, S., Albqmi, M., Al-Sanea, M. M., Alnusaire, T., Almuhayawi, M. S., AbdElgawad, H., Al Jaouni, S. K., Elkelish, A., Hussein, S., Warrad, M., & El-Saadony, M. T. (2022). Valorizing the usage of olive leaves, bioactive compounds, biological activities, and food applications: a comprehensive review. Frontiers in Nutrition, 9(2022), 1008349. doi: 10.3389/fnut.2022.1008349 DOI: https://doi.org/10.3389/fnut.2022.1008349
Senger, C. C., Kozloski, G. V., Sanchez, L. M. B., Mesquita, F. R., Alves, T. P., & Castagnino, D. S. (2008). Evaluation of autoclave procedures for fiber analysis in forage and concentrate feedstuffs. Animal Feed Science and Technology, 146(1-2), 169-174. doi: 10.1016/j.anifeedsci.2007.12.008 DOI: https://doi.org/10.1016/j.anifeedsci.2007.12.008
Statistical Analysis System Institute (2013). SAS/STAT® 13.1 user’s guide. SAS Institute Inc.
Suong, N. T. M., Paengkoum, S., Salem, A. Z. M., Paengkoum, P., & Purba, R. A. P. (2022). Silage fermentation quality, anthocyanin stability and in vitro rumen fermentation characteristic of ferrous sulfate heptahydrate-treated black cane (Saccharum sinensis R.). Frontiers in Veterinary Science, 17(9), 896270. doi: 10.3389/fvets.2022.896270 DOI: https://doi.org/10.3389/fvets.2022.896270
Symeou, S., Miltiadou, D., Constantinou, C., Papademas, P., & Tzamaloukas O. (2021). Feeding olive cake silage up to 20% of DM intake in sheep improves lipid quality and health-related indices of milk and ovine halloumi cheese. Tropical Animal and Health Production, 53(2), 229-235. doi: 10.1007/s11250-021-02674-7 DOI: https://doi.org/10.1007/s11250-021-02674-7
Tahseen, O., Abdallah, J., & Omar, J. A. (2014). In situ degradability of dry matter, crude protein, acid and neutral detergent fiber of olive cake and greenhouse wastes of tomato and cucumber. Revue de Medecine Veterinaire, 163(3-4), 93-98.
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2 DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Vargas-Bello-Pérez, E., Vera, R. R., Aguilar, C., Lira, R., Peña, I., & Fernández, J. (2013). Feeding olive cake to ewes improves fatty acid profile of milk and cheese. Animal Feed Science and Technology, 184(1-4), 94-99. doi: 10.1016/j.anifeedsci.2013.05.016 DOI: https://doi.org/10.1016/j.anifeedsci.2013.05.016
Verbeke, K. A., Boobis, A. R., Chiodini, A., Edwards, C. A., Franck, A., Kleerebezem, M., Nauta, A., Raes, J., Van Tol, E. A., & Tuohy, K. M. (2015). Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutrition Research Reviews, 28(1), 42-66. doi: 10.1017/S0954422415000037 DOI: https://doi.org/10.1017/S0954422415000037
Wang, H., Sun, C., Yang, S., Ruan, S., Ruan, Y., Lyu, L., Guo, X., Wu, X., & Chen, Y. (2023). Exploring the impact of initial moisture content on microbial community and flavor generation in Xiaoqu baijiu fermentation. Food Chemistry: X, 20(30), 100981. doi: 10.1016/j.fochx.2023.100981 DOI: https://doi.org/10.1016/j.fochx.2023.100981
Weinberg, Z. G., Chen, Y., & Weinberg, P. (2008). Ensiling olive cake with and without molasses for ruminant feeding. Bioresource Technology, 99(6), 1526-1529. doi: 10.1016/j.biortech.2007.04.022 DOI: https://doi.org/10.1016/j.biortech.2007.04.022
White, R. R., Hall, M. B., Firkins, J. L., & Kononoff, P. J. (2017). Physically adjusted neutral detergent fiber system for lactating dairy cow rations. I: Deriving equations that identify factors that influence effectiveness of fiber. Journal of Dairy Science, 100(12), 9551-9568. doi: 10.3168/jds.2017-12765 DOI: https://doi.org/10.3168/jds.2017-12765
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Fábio Antunes Rizzo, Jorge Schafhäuser Junior, Ana Carolina Fluck, Olmar Antônio Denardin Costa, Rudolf Brand Scheibler, Lívia Argoud Lourenço, José Laerte Nörnberg, Ana Paula Binato de Souza, Diego Prado de Vargas, Jamir Luís Silva da Silva
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.