Effect of sublethal concentrations of insecticides associated with NaCl and KCl on feeding behavior and mortality of Euschistus heros and Diceraeus melacanthus (Hemiptera: Pentatomidae)
DOI:
https://doi.org/10.5433/1679-0359.2022v43n5p2045Keywords:
Green-belly stink bug, Insecticide association, Integrated pest management, Neotropical-brown stinkbug.Abstract
Stink bugs are important pests of highly profitable agricultural crops worldwide, and the use of insecticides remains the main strategy for their control. The objectives of this study were to evaluate the behavioral aspects of Euschistus heros and Diceraeus melacanthus through feeding after exposure to chloride solutions (NaCl and KCl), as well as the control efficacy of insecticides in combination with salt. Two bioassays were performed with stink bugs exposed to treated substrate: i) feeding preference by salivary sheath counting in a free choice test for chloride solutions, using bean pod or corn seedling as counting substrate for newly emerged E. heros and D. melacanthus adults, respectively; and ii) comparative efficiency of five synthetic insecticides associated with NaCl or KCl in the mortality of 4th instar nymphs (N4). Pre-determined sublethal (LC25) and median lethal (LC50) concentrations of commercially available insecticides (Lfn), buprofezin (Bpf), pyriproxyfen (Ppx), chlorantraniliprole (Ctn) and spinosad (Spn) were used. For each species and insecticide, the treatments were pure LC25, LC25 + NaCl 5% m/m, LC25 + KCl 5% m/m, pure LC50, and distilled water (dH2O) as the control. Corn seedlings treated with 5% NaCl saline solution had reduced salivary sheaths from D. melacanthus. Ctn LC25 (0.63 mL L-1) + 5% NaCl and pure Ctn LC50 (1.16 mL L-1) were similar and more efficient in terms of mortality of D. melacanthus N4s than any other treatment. The association of Spn LC25 (0.37 mL L-1) + 5% NaCl and Spn LC50 only (0.90 mL L-1) was similar to that of E. heros N4s compared to other treatments. The insecticide concentrations used in this study have potential for stink bug pest control, thus the association of insecticides with commercially available, easy-to-find, and low-cost chloride salts may represent a good strategy for stink bug control.Downloads
References
Aydin, H., & Gurkan, M. O. (2006). The efficacy of spinosad on different strains of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Turkish Journal of Biology, 30(1), 5-9. http://journals.tubitak.gov. tr/biology/vol30/iss1/2/
Barwary, Z., Gorzlancyk, A., & Hu, X. P. (2015). Effects of concentration, distance, and application methods of Altriset (Chlorantraniliprole) on eastern subterranean termite (Isoptera: Rhinotermitidae). Insect Science, 22, 451-460. doi: 10.1111/1744-7917.12122
Bowling, C. C. (1979). The stylet sheath as an indicator of feeding activity of the rice stink bug. Journal of Economic Entomology, 72(2), 259-260. doi: 10.1093/jee/72.2.259
Corso, I. C. (1990). Uso de sal de cozinha na redução da dose de inseticida para controle de percevejos da soja. (Comunicado Técnico, 45). Embrapa Soja.
Corso, I. C., & Gazzoni, D. L. (1998). Sodium chloride: an insecticide enhancer for controlling pentatomids on soybeans. Pesquisa Agropecuaria Brasileira, 33(10), 1563-1571. doi: 10.1590/S1678-3921.pab1998. v33.5002
Cremonez, P. S. G., Gouvea, S. P., Pinheiro, D. O., Falleiros, Â. M., Levy, S. M., Meneghin, A. M., Fonseca, I. C. B., & Neves, P. M. O. J. (2019). Chitin biosynthesis inhibitors in Euschistus heros Fabr. (Hemiptera: Pentatomidae): morphometric alterations in testes and nuclei of testicular accessory cells of adults. Journal of Agricultural Science, 11(1), 410-417. doi: 10.5539/jas.v11n1p410
Cremonez, P. S. G., Oliveira Pinheiro, D. de, Falleiros, Â. M. F., & Neves, P. M. O. J. (2017). Performance of reproductive system of Dichelops melacanthus (Hemiptera: Pentatomidae) subjected to buprofezin and pyriproxyfen: morphological analysis of ovarioles and testes. Semina: Ciências Agrárias, 38(4), 2279-2291. doi: 10.5433/1679-0359.2017v38n4Supl1p2279
Fernández, M. M., Medina, P., Wanumen, A., Del Estal, P., Smagghe, G., & Viñuela, E. (2017). Compatibility of sulfoxaflor and other modern pesticides with adults of the predatory mite Amblyseius swirskii. Residual contact and persistence studies. BioControl, 62(2), 197-208. doi: 10.1007/s10526-017-9784-1
Firake, D. M., Thubru, D. P., & Behere, G. T. (2017). Eco toxicological risk and impact of pesticides on important parasitoids of cabbage butterflies in cruciferous ecosystem. Chemosphere, 168, 372-383. doi: 10.1016/j.chemosphere.2016.10.071
Hill, T. A., & Foster, R. E. (2000). Effect of insecticides on the diamondback moth (Lepidoptera: Plutellidae) and its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Journal of Economic Entomology, 93(3), 763-768. doi: 10.1603/0022-0493-93.3.763
Huang, F., & Subramanyam, B. (2007). Effectiveness of spinosad against seven major stored grain insects on corn. Insect Science, 14, 225-230. doi: 10.1111/j.1744-7917.2007.00148.x
Huang, H. J., Liu, C. W., Cai, Y. F., Zhang, M. Z., Bao, Y. Y., & Zhang, C. X. (2015). A salivary sheath protein essential for the interaction of the brown planthopper with rice plants. Insect Biochemistry and Molecular Biology, 66, 77-87. doi: 10.1016/j.ibmb.2015.10.007
Insecticide Resistance Action Committee (2021). The IRAC mode of action classification online. https://irac-online.org/modes-of-action/
Ishaaya, I., Kontsedalov, S., & Horowitz, A. R. (2005). Biorational insecticides: mechanism and cross resistance. Archives of Insect Biochemistry and Physiology, 58, 192-199. doi: 10.1002/arch.20042
Joseph, S. V., Grettenberger, I., & Godfrey, L. (2016). Insecticides applied to soil of transplant plugs for Bagrada hilaris (Burmeister) (Hemiptera: Pentatomidae) management in broccoli. Crop Protection, 87, 68-77. doi: 10.1016/j.cropro.2016.04.023
Khan, H. A. A. (2018). Spinosad resistance affects biological parameters of Musca domestica Linnaeus. Scientific Reports, 8, 1-7. doi: 10.1038/s41598-018-32445-8
Liang, J., Tang, S., & Cheke, R. A. (2016). Beverton Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance. Communications in Nonlinear Science and Numerical Simulation, 36, 327-341. doi: 10.1016/j.cnsns.2015.12.014
Liu, S. S., Li, Z. M., Liu, Y. Q., Feng, M. G., & Tang, Z. H. (2007). Promoting selection of resistance to spinosad in the parasitoid Cotesia plutellae by integrating resistance of hosts to the insecticide into the selection process. Biological Control, 41(2), 246-255. doi: 10.1016/j.biocontrol.2007.01.013
Lucini, T., & Panizzi, A. R. (2018). Electropenetrography (EPG): a breakthrough tool unveiling stink bug (Pentatomidae) feeding on plants. Neotropical Entomology, 47, 6-18. doi: 10.1007/s13744-017-0574-3
MacMillan, H. A., Williams, C. M., Staples, J. F., & Sinclair, B. J. (2012). Reestablishment of ion homeostasis during chill coma recovery in the cricket Gryllus pennsylvanicus. Proceedings of the National Academy of Sciences, 109(50), 20750-20755. doi: 10.1073/pnas.1212788109
Matsumoto, J. F., Cremonez, P. S. G., Roggia, S., Falleiros, Â. M. F., Levy, S. M., Neves, P. M. O. J., & Pinheiro, D. O. (2021). Sublethal concentration of pyriproxyfen reduces testicular connective tissue thickness in Euschistus heros Fabr. (Hemiptera: Pentatomidae). Journal of Agricultural Science, 13(9), 27-35. doi: 10.5539/jas.v13n9p27
Mayes, M. A., Thompson, G. D., Husband, B., & Miles, M. M. (2003). Spinosad toxicity to pollinators and associated risk. In G. Ware (Ed.), Reviews of environmental contamination and toxicology (vol. 179, pp. 37-71). Dordrecht..
Moallemzadegan, Z., Kazzazi, M., & Hosseininaveh, V. (2011). Digestive alfa amylase activity in Aelia acuminata L. (Hemiptera: Pentatomidae). Archives of Phytopathology and Plant Protection, 44(16), 1560-1571. doi: 10.1080/03235408.2010.516080
Niva, C. C., & Panizzi, A. R. (1996). Efeitos do cloreto de sodio no comportamento de Nezara viridula (L.) (Heteroptera: Pentatomidae) em vagem de soja. Anais da Sociedade Entomologica do Brasil, 25(2), 251-257. doi: 10.37486/0301-8059.v25i2.1126
Panizzi, A. R. (2013). History and contemporary perspectives of the integrated pest management of soybean in Brazil. Neotropical Entomology, 42, 119-127. doi: 10.1007/s13744-013-0111-y
Panizzi, A. R., & Lucini, T. (2017). Host plant-stink bug (Pentatomidae) relationships. In Cokl, A., Borges, M. Stink bugs biorational control based on communication processes (pp. 31-58). Boca Raton. doi: 10.1201/9781315120713
Pineda, S., Schneider, M. I., Smagghe, G., Martinez, A. M., Del Estal, P., Vinuela, E., Valle, J., & Budia, F. (2007). Lethal and sublethal effects of methoxyfenozide and spinosad on Spodoptera littoralis (Lepidoptera: Noctuidae). Journal od Economic Entomology. 100(3), 773-780. doi: 10.1093/jee/100.3.773
Pontes, G., Pereira, M. H., & Barrozo, R. B. (2017). Salt controls feeding decisions in a blood sucking insect. Journal of Insect Physiology, 98, 93-100. doi: 10.1016/j.jinsphys.2016.12.002
Puntener, W. (1981). Manual for field trials in plant protection (2nd ed.). Ciba Geigy.
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Ramiro, Z. A., Batista, A. F., & Cintra, E. R. R. (2005). Eficiência do inseticida Actara Mix 110+ 220 CE (Thiamethoxam+ Cipermetrina) no controle de percevejos pragas da soja. Arquivos do Instituto Biológico, 72(2), 239-247. doi: 10.1590/1808-1657v72p2372005
Ramos, G. S., De Paulo, P. D., Toledo, P. F. S., Haddi, K., Zanuncio, J. C., & Oliveira, E. E. (2019). Effects of imidacloprid sodium chloride association on survival and reproduction of the stink bug Podisus nigrispinus. Revista de Ciências Agrícolas, 36(E), 71-81. doi: 10.22267/rcia.1936e.108
Raubenheimer, D., & Gade, G. (1993). Compensatory water intake by locusts (Locusta migratoria): implications for mechanisms regulating drink size. Journal of Insect Physiology, 39(4), 275-281. doi: 10. 1016/0022-1910(93)90057-X
Rimoldi, F., Schneider, M. I., & Ronco, A. E. (2012). Short and long term effects of endosulfan, cypermethrin, spinosad, and methoxyfenozide on adults of Chrysoperla externa (Neuroptera: Chrysopidae). Journal of Economic Entomology, 105(6), 1982-1987. doi: 10.1603/ec12189
Ritz, C., & Streibig, J. C. (2015). Bioassay Analysis using R. Journal of Statistical Software, 12(5), 1-22. doi: 10.18637/jss.v012.i05
Rodrigues, H. S., Haddi, K., Campos, M. O., Ferreira, N. A., Fo., Guedes, R. N. C., Newland, P. L., & Oliveira, E. E. (2020). Synergism and unintended effects of the association between imidacloprid and sodium chloride (NaCl) on the management of Euschistus heros. Pest Management Science, 77, 417-424. doi: 10. 1002/ps.6032
Sanford, J. L., Shields, V. D., & Dickens, J. C. (2013). Gustatory receptor neuron responds to DEET and other insect repellents in the yellow fever mosquito, Aedes aegypti. Naturwissenschaften, 100, 269-273. doi: 10.1007/s00114-013-1021-x
Santos, V. S. V., Silva, C. E., Oliveira, C. M., Morais, C. R. de, Limongi, J. E., & Pereira, B. B. (2019). Evaluation of toxicity and environmental safety in use of spinosad to rationalize control strategies against Aedes aegypti. Chemosphere, 226, 166-172. doi: 10.1016/j.chemosphere.2019.03.129
Sparks, T. C., Crossthwaite, A. J., Nauen, R., Banba, S., Cordova, D., Earley, F., Ebbinghaus-Kintscher, U. Fujioka, S., Hirao, A., Karmon, D., Kennedy, R., Toshifumi, N., Popham, H. J. R., Salgado, V., Watson, G. B., Wedel, B. J., & Wessels, F. J. (2020). Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification a tool for resistance management. Pesticide Biochemistry and Physiology, 167, 104587. doi: 10.1016/j.pestbp.2020.104587
Sparks, T. C., Storer, N., Porter, A., Slater, R., & Nauen, R. (2021). Insecticide resistance management and industry: the origins and evolution of the Insecticide Resistance Action Committee (IRAC) and the mode of action classification scheme. Pest Management Science, 77, 2609-2619. doi: 10.1002/ps.6254
Stark, J. D., Vargas, R., & Miller, N. (2004). Toxicity of spinosad in protein bait to three economically important tephritid fruit fly species (Diptera: Tephritidae) and their parasitoids (Hymenoptera: Braconidae). Journal of Economic Entomology, 97(3), 911-915. doi: 10.1093/jee/97.3.911
Sun, R., Liu, C., Zhang, H., & Wang, Q. (2015). Benzoylurea chitin synthesis inhibitors. Journal of Agricultural and Food Chemistry, 63(31), 6847-6865. doi: 10.1021/acs.jafc.5b02460
Terra, W. R., & Ferreira, C. (2012). Biochemistry and molecular biology of digestion. In L. I. Gilbert (Ed.), Insect molecular biology and biochemistry (pp. 365-418). London, UK.
Tuelher, E. S., Silva, E. H. da, Freitas, H. L., Namorato, F. A., Serrão, J. E., Guedes, R. N. C., & Oliveira, E. E. (2017). Chlorantraniliprole mediated toxicity and changes in sexual fitness of the Neotropical brown stink bug Euschistus heros. Journal of Pest Science, 90, 397-405. doi: 10.1007/s10340-016-0777-0
United States Department of Agriculture - Foreign Agricultural Service (2021). Grain: world market and trade. https://apps.fas.usda.gov/psdonline/circulars/grain.pdf
Valcárcel, F., Sánchez, J. P., Tercero Jaime, J., Basco-Basco, P. I., Cota Guajardo, S., Cutuli, M. T., González, J., & Olmeda, A. S. (2015). Control of tick infestations in Oryctolagus cuniculus (Lagomorpha: Leporidae) with spinosad under laboratory and field conditions. Journal of Medical Entomology, 52(2), 207-213. doi: 10.1093/jme/tju018
Vayias, B. J., Athanassiou, C. G., & Buchelos, C. T. (2009). Effectiveness of spinosad combined with diatomaceous earth against different European strains of Tribolium confusum du Val (Coleoptera: Tenebrionidae): influence of commodity and temperature. Journal of Stored Products Research, 45(3), 165-176. doi: 10.1016/j.jspr.2008.11.002
Wang, D., Gong, P., Li, M., Qiu, X., & Wang, K. (2009). Sublethal effects of spinosad on survival, growth and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae). Pest Management Science, 65, 223-227. doi: 10.1002/ps.1672
Williams, T., Valle, J., & Vinuela, E. (2003). Is the naturally derived insecticide Spinosad R compatible with insect natural enemies? Biocontrol Science and Technology, 13(5), 459-475. doi: 10.1080/09583150310 00140956
Yu, S. J. (2014). The toxicology and biochemistry of insecticides (2nd ed.). CRC Press.
Zeilinger, A. R., Olson, D. M., Raygoza, T., & Andow, D. A. (2015). Do counts of salivary sheath flanges predict food consumption in herbivorous stink bugs (Hemiptera: Pentatomidae)?. Annals of the Entomological Society of America, 108(2), 109-116. doi: 10.1093/aesa/sau011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.