Influence of base saturation on buckwheat grain and flavonoid production
DOI:
https://doi.org/10.5433/1679-0359.2022v43n3p1095Keywords:
Antioxidant activity, Biological value, Fagopyrum esculentum, Pseudocereal, Rutin.Abstract
Fagopyrum esculentum is highly nutritious due to its proteins of high biological value and high fiber content. Its most relevant property is nonetheless its antioxidant activity, provided by the presence of flavonoids. It is an important pseudocereal in agriculture, animal production, and human food. The objective of study was to evaluate the grain yield and flavonoid production of Fagopyrum esculentum cultivars as a function of base saturation. The experiment was carried out in a greenhouse, in a completely randomized design with four replicates. Treatments were represented by cultivars IPR 91 and IPR 92 and five base saturation levels (9, 31, 53, 75, and 97 %), in a factorial arrangement (2 × 5). Agronomic attributes and total-flavonoid and rutin contents and production were evaluated. Subsequently, the data were subjected to statistical analysis. Base saturation does not affect flavonoid production. However, base saturation influences shoot dry matter yield (maximum at 62.0% base saturation) and grain yield (maximum at 9.00%) in IPR 92. The higher-yielding cultivar is IPR 92. This is the first scientific report of base saturation in the species.Downloads
References
Aubert, L., Konrádová, D., Kebbas, S., Barris, S., & Quinet, M. (2020). Comparison of high temperature resistance in two buckwheat species Fagopyrum esculentum and Fagopyrum tataricum. Journal of Plant Physiology, 251, 153222. doi: 10.1016/j.jplph.2020.153222
Bai, C. Z., Feng, M. L., Hao, X. L., Zhong, Q. M., Tong, L. G., & Wang, Z. H. (2015). Rutin, quercetin, and free amino acid analysis in buckwheat (Fagopyrum) seeds from different locations. Genetics and Molecular Research, 14(4), 19040-19048. doi: 10.4238/2015
Bisht, A. S., Bhatt, A., & Singh, P. (2018a). Studies on variability, correlation and path coefficient analysis for seed yield in buckwheat (Fagopyrum esculentum Moench) germplasm. Journal of Pharmacognosy and Phytochemistry, Sp.5, 35-39. Available at https://bit.ly/2Im2xor
Empresa Brasileira de Pesquisa Agropecuária (2014). Cultivo de trigo: colheita e pós-colheita. Available at https://bit.ly/3nb22MA
Fang, X., Li, Y., Nie, J., Wang, C., Huang, K., Zhang, Y.,… Yi, Z. (2018). Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.). Field Crops Research, 219, 160-168. doi: 10.1016/j.fcr.2018. 02.001
Gabr, A. M., Sytar, O., Ghareeb, H., & Brestic, M. (2019). Accumulation of amino acids and flavonoids in hairy root cultures of common buckwheat (Fagopyrum esculentum). Physiology and Molecular Biology of Plants, 25(3), 787-797. doi: 10.1007/s12298-019-00669-1
Giménez-Bastida, J. A., Piskula, M., & Zielinski, H. (2015). Recent advances in development of gluten free buckwheat products. Trends in Food Science & Technology, 44(1), 58-65. doi: 10.1016/j.tifs.2015.02.013
Gorgen, A. V., Cabral, S. L. S., Fº., Leite, G. G., Spehar, C. R., Diogo, J. M. S., & Ferreira, D. B. (2016). Productivity and forage quality of buckwheat (Fagopyrum esculentum Moench) and pearl millet (Pennisetum glaucum (L.) R. BR). Revista Brasileira de Saúde e Produção Animal, 17(4), 599-607. doi: 10.1590/S1519-99402016000400004
Horbowicz, M., Kowalczyk, W., Grzesiuk, A., & Mitrus, J. (2011). Uptake of aluminium and basic elements, and accumulation of anthocyanins in seedlings of common buckwheat (Fagopyrum esculentum Moench) as a result increased level of aluminium in nutrient solution. Ecological Chemistry and Engineering S, 18(4), 479-488. Available at https://bit.ly/2X35osF
Instituto Brasileiro de Geografia e Estatística (2019). Montes Claros: território e ambiente. Available at https:// bit.ly/3oBYyVa
Instituto Nacional de Meteorologia (2019). Banco de dados meteorológicos para ensino e pesquisa. Available at http://bit.ly/2gTcwCu
Jiang, Y., Feng, X., Yang, Y., Qi, X., Ren, Y., Gao, Y.,... & Zeng, Z. (2018). Performance of common buckwheat (Fagopyrum esculentum M.) supplied with selenite or selenate for selenium biofortification in northeastern China. The Crop Journal, 6(4), 386-393. doi: 10.1016/j.cj.2018.03.003
Joshi, D. C., Chaudhari, G. V., Sood, S., Kant, L., Pattanayak, A., Zhang, K., ... & Zhou, M. (2019). Revisiting the versatile buckwheat: reinvigorating genetic gains through integrated breeding and genomics approach. Planta, 250(3), 783-801. doi: 10.1007/s00425-018-03080-4
Kiprovski, B., Mikulic-Petkovsek, M., Slatnar, A., Veberic, R., Stampar, F., Malencic, D., & Latkovic, D. (2015). Comparison of phenolic profiles and antioxidant properties of European Fagopyrum esculentum cultivars. Food Chemistry, 185, 41-47. doi: 10.1016/j.foodchem.2015.03.137
Mendes, A. D. R., Martins, E. R., Fernandes, L. A., & Marques, C. C. L. (2005). Produção de biomassa e de flavonóides totais por fava d'anta (Dimorphandra mollis Benth) sob diferentes níveis de fósforo em solução nutritiva. Revista Brasileira de Plantas Medicinais, 7(2), 7-11. Available at https://bityli.com/ KWkOp
Pekal, A., & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7(9), 1776-1782. doi: 10.1007/s12161-014-9814-x
Podsiadlo, C., & Skorupa, B. (2017). Impact of magnetized water on germination energy of seeds and weight of garden savory (Satureja hortensis L.), buckwheat (Fagopyrum esculentum L.), yellow lupine (Lupinus luteus L.) and winter rape (Brassica napus L.) seedlings. Infrastruktura i Ekologia Terenów Wiejskich, 3, 1241–1250. doi: 10.14597/infraeco.2017.3.2.095
Relva Verde (2020). Cereais, grãos e sementes: trigo. Available at http://bit.ly/2EhsZrP
Ribeiro, F. A. G., Emrich, E. B., Costa, L. A. S., Melo, D. F. M. de, Vieira, A. L. S., Emrich, R. P. S., & Gomes, D. C. (2019). Uso de fertilizante fosfatado de baixa solubilidade no cultivo de trigo sarraceno em condições de cultivo protegido. Anais do Seminário de Pesquisa e Inovação Tecnológica-SEPIT, Uberaba, MG, Brasil.
R-Studio (2017). Rstudio: integrated development for R. Boston: Rstudio Inc. Available at http://www.rstudio. com/
Sedej, I., Sakac, M., Mandic, A., Misan, A., Tumbas, V., & Canadanovic Brunet, J. (2012). Buckwheat (Fagopyrum esculentum Moench) grain and fractio: antioxidant compounds and activities. Journal of Food Science, 77(9), C954-C959. doi: 10.1111/j.1750-3841.2012.02867.x
Siracusa, L., Gresta, F., Sperlinga, E., & Ruberto, G. (2017). Effect of sowing time and soil water content on grain yield and phenolic profile of four buckwheat (Fagopyrum esculentum Moench.) varieties in a Mediterranean environment. Journal of Food Composition and Analysis, 62, 1-7. doi: 10.1016/j.jfca. 2017.04.005
Unal, H., Izli, G., Izli, N., & Asik, B. B. (2017). Comparison of some physical and chemical characteristics of buckwheat (Fagopyrum esculentum Moench) grains. CyTA-Journal of Food, 15(2), 257-265. doi: 10.10 80/19476337.2016.1245678
Xiang, D., Song, Y., Wu, Q., Ma, C., Zhao, J., Wan, Y., & Zhao, G. (2019). Relationship between stem characteristics and lodging resistance of Tartary buckwheat (Fagopyrum tataricum). Plant Production Science, 22(2), 202-210. doi: 10.1080/1343943X.2019.1577143
Xiaohua, L., Park, N. I., Xu, H., Woo, S. H., Park, C. H., & Park, S. U. (2010). Differential expression of flavonoid biosynthesis genes and accumulation of phenolic compounds in common buckwheat (Fagopyrum esculentum). Journal of Agricultural and Food Chemistry, 58(23), 12176-12181. doi: 10. 1021/jf103310g
Xu, J. M., Fan, W., Jin, J. F., Lou, H. Q., Chen, W. W., Yang, J. L., & Zheng, S. J. (2017). Transcriptome analysis of Al-induced genes in buckwheat (Fagopyrum esculentum Moench) root apex: new insight into Al toxicity and resistance mechanisms in an Al accumulating species. Frontiers in Plant Science, 8, 1141. doi: 10.3389/fpls.2017.01141
Zhai, K. F., Duan, H., Shi, S. X., Liu, L. L., Cao, W. G., Gao, G. Z., & Shan, L. L. (2018). Synchronised determination of chlorogenic acid and five flavonoids in mulberry leaves using HPLC with photodiode array detection. Quality Assurance and Safety of Crops & Foods, 10(2), 175-182. doi: 10.3920/QAS 2017.1202
Zhao, J. L., Zou, L., Zhang, C. Q., Li, Y. Y., Peng, L. X., Xiang, D. B., & Zhao, G. (2014). Efficient production of flavonoids in Fagopyrum tataricum hairy root cultures with yeast polysaccharide elicitation and medium renewal process. Pharmacognosy Magazine, 10(39), 234-240. doi: 10.4103/0973-1296.137362
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.