Chemical composition and fatty acid profile of BRS Capiaçu ensiled at different regrowth ages
DOI:
https://doi.org/10.5433/1679-0359.2021v42n3Supl1p1981Keywords:
Linoleic acid, Linolenic acid, Pennisetum purpureum, Silage, Tropical grass.Abstract
This study aimed to evaluate the chemical composition and fatty acid (FA) profile of chopped forage and silage of BRS Capiaçu elephant grass at four regrowth ages: 50, 70, 90 and 110 days. A randomized block design with five replications was used. The ensiling was carried out manually in experimental silos without wilting using no additives or bacterial inoculants. The results were analyzed using mixed models (P smaller 0.05). The model included treatment (regrowth age) as a fixed effect and block as a random effect. Linear and quadratic effects of the treatments were analyzed using orthogonal contrasts. There were linear increases in the dry matter (DM, g kg -1) and lignin (g kg -1 DM) contents and linear reductions in the in vitro DM digestibility (g kg -1) of chopped grass and silage as a function of regrowth age (P smaller 0.001). Quadratic effects (P smaler 0.01) were observed for the chopped grass contents (g kg-1 DM) of crude protein (CP), ether extract (EE) and neutral detergent fiber (NDF) as a function of regrowth age. There were linear decreases (P smaler 0.0001) in the CP content (g kg-1 DM) and pH and linear increases (P smaler 0.001) in the EE and NDF contents (g kg-1 DM) in the silage as a function of regrowth age. There were linear decreases (P smaler 0.01) in the chopped grass contents and linear increases (P smaler 0.05) in the silage contents of total FAs, linoleic and alfa-linolenic acids (g kg-1 DM) as a function of regrowth age. BRS Capiaçu elephant grass must be harvested at up to 70 days of regrowth to obtain forage with good nutritional value and the highest levels of linoleic and alfa-linolenic acids (g kg-1 DM). To produce silages with adequate pH values and the highest levels of linoleic and alfa-linolenic acids (g kg-1 DM), BRS Capiaçu must be harvested between 90 and 110 days of regrowth.Downloads
References
Arvidsson, K., Gustavsson, A.-M., & Martinsson, K. (2009). Effects of conservation method on fatty acid composition of silage. Animal Feed Science and Technology, 148(2-4), 241-252. doi: 10.1016/j.anifeedsci.2008.04.003
Baumont, R., Arrigo, Y., & Niderkorn, V. (2011). Transformation des plantes au cours de leur conservation et conséquences sur leur valeur pour les ruminants. Fourrages, 205, 35-46. Retrieved from https://afpf-asso.fr/article/transformation-des-plantes-au-cours-de-leur-conservation-et-consequences-sur-leur-valeur-pour-les-ruminants
Bochicchio, D., Comellini, M., Marchetto, G., Faeti, V., & Della Casa, G. (2015). Modification of lipid fraction in ensiled high moisture corn. Italian Journal of Animal Science, 14(3), 466-470. doi: 10.4081/ijas.2015.3899
Boufaïed, H., Chouinard, P. Y., Tremblay, G. F., Petit, H. V., Michaud, R., & Bélanger, G. (2003). Fatty acids in forages. I. Factors affecting concentrations. Canadian Journal of Animal Science, 83(3), 501-511. doi: 10.4141/A02-098
Bueno, A. V. I., Lazzari, G., Jobim, C. C., & Daniel, J. L. P. (2020). Ensiling total mixed ration for ruminants: a review. Agronomy, 10(6), 879. doi: 10.3390/agronomy10060879
Cabiddu, A., Wencelov, M., Bomboi, G., Decandia, M., Molle, G., & Salis, L. (2017). Fatty acid profile in two berseem clover (Trifolium alexandrinum L.) cultivars: Preliminary study of the effect of part of plant and phenological stage. Grassland Science, 63(2), 101-110. doi: 10.1111/grs.12159
Daniel, J. L. P., Bernardes, T. F., Jobim, C. C., Schmidt, P., & Nussio, L. G. (2019). Production and utilization of silages in tropical areas with focus on Brazil. Grass and Forage Science, 74(2), 188-200. doi: 10.1111/gfs.12417
Detmann, E., Valadares, S. C., Fº., Berchielli, T. T., Cabral, L. S., Ladeira, M. M., Souza, M. A.,... Azevedo, J. A. G. (2012). Métodos para análise de alimentos. Visconde do Rio Branco: SUPREMA.
Dewhurst, R. J., Shingfield, K. J., Lee, M. R. F., & Scollan, N. D. (2006). Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Animal Feed Science and Technology, 131(3-4), 168-206. doi: 10.1016/j.anifeedsci.2006.04.016
Ding, W. R., Long, R. J., & Guo, X. S. (2013). Effects of plant enzyme inactivation or sterilization on lipolysis and proteolysis in alfalfa silage. Journal of Dairy Science, 96(4), 2536-2543. doi: 10.3168/jds.2012-6438
Elgersma, A. (2015). Grazing increases the unsaturated fatty acid concentration of milk from grass-fed cows: a review of the contributing factors, challenges and future perspectives. European Journal of Lipid Science and Technology, 117(9), 1345-1369. doi: 10.1002/ejlt.201400469
Ferreira, E. A., Abreu, J. G., Martinez, J. C., Braz, T. G. S., & Ferreira, D. P. (2018). Cutting ages of elephant grass for chopped hay production. Pesquisa Agropecuária Tropical, 48(3), 245-253. doi: 10.1590/1983-40632018v4851569
Gadeyne, F., De Ruyck, K., Van Ranst, G., De Neve, N., Vlaeminck, B., & Fie, V. (2016). Effect of changes in lipid classes during wilting and ensiling of red clover using two silage additives on in vitro ruminal biohydrogenation. Journal of Agricultural Science, 154(3), 553-566. doi: 10.1017/S0021859615001203
Gedi, M. A., Briars, R., Yuseli, F., Zainol, N., Darwish, R., Salter, A. M., & Gray, D. A. (2017). Component analysis of nutritionally rich chloroplasts: recovery from conventional and unconventional green plant species. Journal of Food Science and Technology, 54(9), 2746-2757. doi: 10.1007/s13197-017-2711-8
Glasser, F., Doreau, M., Maxin, G., & Baumont, R. (2013). Fat and fatty acid content and composition of forages: a meta-analysis. Animal Feed Science and Technology, 185(1-2), 19-34. doi: 10.1016/j.anifeedsci.2013.06.010
Goossen, C. P., Kraft, J., & Bosworth, S. C. (2018). Fatty acids decrease in pearl millet forage from relative increases of pseudostem. Agricultural & Environmental Letters, 3(1), 1-4. doi: 10.2134/ael2018.03.0016
Han, L., & Zhou, H. (2013). Effects of ensiling processes and antioxidants on fatty acid concentrations and compositions in corn silages. Journal of Animal Science and Biotechnology, 4(48), 1-7. doi: 10.1186/2049-1891-4-48
Hölzl, G., & Dörmann, P. (2019). Chloroplast lipids and their biosynthesis. Annual Review of Plant Biology, 70(1), 51-81. doi: 10.1146/annurev-arplant-050718-100202
Instituto Nacional de Metereologia (2020). Estações e dados/dados metereológicos. Brasília, DF: INMET.
Khan, N. A., Cone. J. W., Fievez, V., & Hendriks, W. H. (2012). Causes of variation in fatty acid content and composition in grass and maize silages. Animal Feed Science and Technology, 174(1-2), 36-45. doi: 10.1016/j.anifeedsci.2012.02.006
Khan, N. A., Farooq, M. W, Ali, M., Suleman, M., Ahmad, N., Sulaiman, S. M.,… Hendriks, W. H. (2015). Effect of species and harvest maturity on the fatty acids profile of tropical forages. The Journal of Animal & Plant Sciences, 25(3), 739-746. Retrieved from http://www.thejaps.org.pk/docs/v-25-03/19. pdf
Lazzarini, I., Detmann, E., Sampaio, C. B., Paulino, M. F., Valadares, S. C., Fº, Souza, M. A., & Oliveira, F. A. (2009). Intake and digestibility in cattle fed low-quality tropical forage and supplemented with nitrogenous compounds. Revista Brasileira de Zootecnia, 38(10), 2021-2030. doi: 10.1590/S1516-35982009001000024
Li, H., Bai, K., Hu, Y., Kuang, T., & Lin, J. (2001). Differences between the number and structure of chloroplasts in leaves and in non-leaf organs of wheat. Belgian Journal of Botany, 134(2), 121-126. doi: 10.2307/20794486
Liu, Q. H., Dong, Z. H., & Shao, T. (2018). Effect of additives on fatty acid profile of high moisture alfalfa silage during ensiling and after exposure to air. Animal Feed Science and Technology, 236, 29-38. doi: 10.1016/j.anifeedsci.2017.11.022
Liu, Q. H., Wu, J. X., & Shao, T. (2019). Roles of microbes and lipolytic enzymes in changing the fatty acid profile, α-tocopherol and β-carotene of whole-crop oat silages during ensiling and after exposure to air. Animal Feed Science and Technology, 253, 81-92. doi: 10.1016/j.anifeedsci.2019.04.004
Lopes, F. C. F., Silva, B. C. da M. e, Almeida, M. M. de, & Gama, M. A. S. da. (2015). Lácteos naturalmente enriquecidos com ácidos graxos benéficos à saúde. In P. C. Martins, G. A. Piccinini, E. E. B. Krug, C. E. Martins & F. C. F. Lopes (Eds.), Sustentabilidade ambiental, social e econômica da cadeia produtiva do leite: desafios e perspectivas (Chap. 13, pp. 237-309). Brasília: EMBRAPA. Retrieved from https://ainfo.cnptia.embrapa.br/digital/bitstream/item/128155/1/Cap-13-Lv-2015-Sustentabilidade-Lacteos.pdf
Mae, T., Kai, N., Makino, A., & Ohira, K. (1984). Relation between ribulose bisphosphate carboxylase content and chloroplast number in naturally senescing primary leaves of wheat. Plant & Cell Physiology, 25(2), 333-336. doi: 10.1093/oxfordjournals.pcp.a076718
Maranhão, T. D., Cândido, M. J. D., Lopes, M. N., Pompeu, R. C. F. F., Carneiro, M. S. S., Furtado, R. N.,... Alves, F. G. (2018). Biomass components of Pennisetum purpureum cv. Roxo managed at different growth ages and seasons. Revista Brasileira de Saúde e Produção Animal, 19(1), 11-22. doi: 10.1590/S1519-99402018000100002
Mojica-Rodríguez, J. E., Castro-Rincón, E., Carulla-Fornaguera, J., & Lascano-Aguilar, C. E. (2017). Efecto de la edad de rebrote sobre el perfil de ácidos grasos en gramíneas tropicales. Ciencia y Tecnología Agropecuaria, 18(2), 217-232. doi: 10.21930/rcta.vol18_num2_art:623
Moran, J. (2005). Making quality silage. In J. Moran, Tropical dairy farming: feeding management for small holders in the humid tropics (Chap. 9, pp. 83-97). Devon: Landlinks Press.
Ono, K., Hashimoto, H., & Katoh, S. (1995). Changes in the number and size of chloroplasts during senescence of primary leaves of wheat grown under different conditions. Plant & Cell Physiology, 36(1), 9-17. doi: 10.1093/oxfordjournals.pcp.a078749
Palmquist, D. L, & Jenkins, T. C. (2003). Challenges with fats and fatty acid methods. Journal of Animal Science, 81(12), 3250-3254. doi: 10.2527/2003.81123250x
Pereira, A. V., Lédo, F. J. S., & Machado, J. C. (2017). BRS Kurumi and BRS Capiaçu - New elephant grass cultivars for grazing and cut-and-carry system. Crop Breeding and Applied Biotechnology, 17(1), 59-62. doi: 10.1590/1984-70332017v17n1c9
Pereira, A. V., Ledo, F. J. S., Morenz, M. J. F., Bellini, J. L., Santos, A. M. B., Martins, C. E., & Campolina, J. M. (2016a). BRS Capiaçu: cultivar de capim-elefante de alto rendimento para produção de silagem. Juiz de Fora: EMBRAPA Gado de Leite (Comunicado Técnico, 79).
Pereira, A. V., Morenz, M. J. F., Ledo, F. J. S., & Ferreira, R. P. (2016b). Capim elefante: versatilidades de usos na pecuária de leite. InD. Vilela, R. P. Ferreira, E. N. Fernandes, & F. V. Juntolli (Eds,), Pecuária de leite no Brasil: cenários e avanços tecnológicos (pp. 187-211). Brasília: EMBRAPA.
Savoie, P., Amyot, A., & Thériault, R. (2002). Effect of moisture content, chopping, and processing on silage effluent. Transactions of the ASAE, 45(4), 907-914. doi: 10.13031/2013.9937
Shingfield, K. J., Bernard, L., Leroux, C., & Chilliard, Y. (2010). Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal, 4(7), 1140-1166. doi: 10.1017/S1751731110000510
Soares, J. P. G., Deresz, F., Salman, A. K. D., Aroeira, L. J. M., Oliveira, A. D., Verneque, R. S., & Berchielli, T. T. (2009). Consumo de capim-elefante com diferentes idades fornecido para vacas leiteiras. Archivos de Zootecnia, 58(222), 298-300. doi: 10.4321/S0004-05922009000200017
Sukhija, P. S., & Palmquist, D. L. (1988). Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. Journal of Agricultural and Food Chemistry, 36(6), 1202-1206. doi: 10.1021/jf00084a019
Tomich, T. R., Pereira, L. G. R., Gonçalves, L. C., Tomich, R. G. P., & Borges, I. (2003). Características químicas para avaliação do processo fermentativo de silagens: uma proposta para qualificação da fermentação. (Documentos, 57). Corumbá: EMBRAPA Pantanal.
Van Ranst, G., Fievez, V., De Riek, J., & Van Bockstaele, E. (2009a). Influence of ensiling forages at different dry matters and silage additives on lipid metabolism and fatty acid composition. Animal Feed Science and Technology, 150(1-2), 62-74. doi: 10.1016/j.anifeedsci.2008.08.004
Van Ranst, G., Fievez, V., Vandewalle, M., De Riek, J., & Van Bockstaele, E. (2009b). Influence of herbage species, cultivar and cutting date on fatty acid composition of herbage and lipid metabolism during ensiling. Grass and Forage Science, 64(2), 196-207 doi: 10.1111/j.1365-2494.2009.00686.x
Yang, B., Chen, H., Stanton, C., Ross, R. P., Zhang, H., Chen, Y. Q., & Chen, W. (2015). Review of the roles of conjugated linoleic acid in health and disease. Journal of Functional Foods, 15, 314-325. doi: 10.1016/j.jff.2015.03.050
Yang, Z., & Ohlrogge, J. B. (2009). Turnover of fatty acids during natural senescence of arabidopsis, Brachypodium, and switchgrass and in arabidopsis β-oxidation mutants. Plant Physiology, 150(4), 1981-1989. doi: 10.1104/pp.109.140491
Zailan, M. Z., Yaakub, H., & Jusoh, S. (2018). Yield and nutritive quality of napier (Pennisetum purpureum) cultivars as fresh and ensiled fodder. The Journal of Animal & Plant Sciences, 28(1), 63-72. Retrieved from http://www.thejaps.org.pk/docs/v-28-01/09.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.