Xylanases in diets with alternative feeds and energy reduction in commercial layers
DOI:
https://doi.org/10.5433/1679-0359.2021v42n5p3007Keywords:
Aspergillus japonicus, Carbohydrases, Exogenous enzymes, Metabolizability, Non-starch polysaccharides.Abstract
The use of alternative ingredients has been increasing in a continuing attempt to reduce production costs, along with the use of additives, such as carbohydrates, for their possible positive effects on nutrient metabolization by layers. Thus, this study aimed to evaluate the effects of different xylanases in diets with reduced metabolizable energy (ME) and the inclusion of alternative ingredients on the metabolizability of nutrients in diets for commercial laying hens, by conducting two metabolism tests. In the first trial,100 layers hens were distributed in a fully randomized 2 × 2+1 factorial design (two metabolizable energy reductions × two xylanases, plus one control diet). In the second assay,140layer hens were distributed in a fully randomized 2 × 3+2 factor design (two xylanases× three ingredients, plus two control diets, positive and negative). It was concluded that supplementation with pantanal xylanase improved the metabolizability of nutrients in corn-based diets and soybean meal for light commercial layers, allowing for a reduction of up to 200 kcal/kg of ME in the diets. Xylanases are more effective on wheat bran enabling a decrease of 150 kcal/kg of ME in commercial laying diets without affecting nutrient metabolizability. The action of pantanal xylanase in diets containing fibrous ingredients was similar to that of commercial xylanase.Downloads
References
Alagawany, M., Elners, S. H. S., & Farag, M. R. (2018). The role of exogenous enzymes in promoting growth and improving nutrient digestibility in poultry. Iranian Journal Veterinary Research, 19(3), 157-164. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6184034/
Barbosa, N. A. A., Bonato, M. A., Sakomura, N. K., Dourado, L. R. B., Fernandes, J. B. K., & Kawauchi, I. M. (2014). Digestibilidade ileal de frangos de corte alimentados com dietas suplementadas com enzimas exógenas. Comunicata Scientiae, 5(4), 361-369. doi: 10.14295/cs.v5i4.460
Bobeck, E. A., Nachtrieb, A. B., Batal, A. B., & Persia, M. E. (2014). Effects of xylanase supplementation of corn-soybean meal-dried distiller's grain diets on performance, metabolizable energy, and body composition when fed to first cycle laying hens. Journal of Applied Poultry Research, 23(2), 174-180. doi: 10.3382/japr.2013-00841
Broch, J., Oliveira, N. T. E., Nunes, R. V., Henz, J. R., Silva, I. M., Frank. R., & Schone, R. A. (2015). Chemical composition and energetic values of wheat and its sub-products for broiler chicken. Semina: Ciências Agrárias, 36(5), 3481-3488. doi: 10.5433/1679-0359.2015v36n5p3481
Cowieson, A. J. (2010). Strategic selection of exogenous enzymes for corn/ soy-based poultry diets. Journal of Poultry Science, 47(1), 1-7. doi: 10.2141/jpsa.009045
Dekalb White (2009). Manual de manejo das poedeiras Dekalb White. Recuperado de https://www.fcav. unesp.br/Home/departamentos/zootecnia/NILVAKAZUESAKOMURA/manual_dekalb_white.pdf
Ghayour-Najafabadi, P., Khorravinia, H., Gheisari, A., Azarfar, A., & Khanahmadi, M. (2018). Productive performance, nutrient digestibility and intestinal morphometry in broiler chickens fed corn or wheat-based diets supplemented with bacterial-or-fungal originated xylanase. Italian Journal of Animal Science, 17(1), 165-174. doi: 10.1080/1828051X.2017.1328990
Guo, S., Liu, D., Zhao, X., Li, C., & Guo, Y. (2014). Xylanase supplementation of a wheat-based diet improved nutrient digestion and mRNA expression of intestinal nutrient transporters in broiler chickens infected with Clostridium perfringens. Poultry Science, 93(1), 94-103. doi: 10.3382/ps.2013-03188
Iwahashi, A. S., Furlan, A. C., Scherer, C., Ton, A. P. S., Lorençon, L., & Scapinello, C. (2011). Utilização de complexo enzimático em dietas para codornas de corte. Acta Scientiarum. Animal Science, 33(3), 273-279. doi: 10.4025/actascianimsci.v33i3.11216
Kalantar, M., Khajali, F., & Yaghobfar, A. (2015). Different dietary source of non-starch polysaccharides supplemented with enzymes affected growth and carcass traits, blood parameters and gut physicochemical properties of broilers. Global Journal of Animal Scientific Research, 3(2), 412-418. Retrieved from http://www.journals.wsrpublishing.com/index.php/gjasr/article/view/357
Kiarie, E., Walsh, M. C., & Nyachoti, C. M. (2016). Performance, digestive function and mucosal responses to selected feed additives for pigs. Journal of Animal Science, 94(3), 169-180. doi: 10.2527/jas.2015-98 35
Lima, M. R., Costa, F. G. P., Vieira, D. V. G., Cardoso, A. S., Lima, G. S., Cavalcante, D. T.,... Kaneko, I. N. (2019). Xylanase, glucanase, and phytase in the diet of light laying hens. Journal of Applied Poultry Research, 28(4), 1150-1155. doi: 10.3382/japr/pfz081
Masey O’Neill, H. V., Smith, J. A., & Bedford, M. R. (2014). Multicarbohydrase enzymes for non- ruminants. Asian- Australasian Journal of Animal Science, 27(2), 290-301. doi: 10.5713/ajas.2013.132 61
Mirzaie, S., Zaghari, M., Aminzadeh, S., Shivazad, M., & Mateos, G. G. (2012). Effects of wheat inclusion and xylanase supplementation of the diet on productive performance, nutrient retention, and endogenous intestinal enzyme activity of laying hens. Poultry Science, 91(2), 413-425. doi: 10.3382/ps.2011-01686
Moghaddam, H. N., Salari, S., Arshami, J., Golian, A., & Maleki, M. (2012). Evaluation of the nutritional value of sunflower meal and its effect on performance, digestive enzyme activity, organ weight, and histological alterations of the intestinal villi of broiler chickens. Journal Applied Poultry Research, 21(2), 293-304. doi: 10.3382/japr.2011-00396
Mongin, P. (1981). Recent Advances in dietary anion-cation balance: application in poultry. Procedure Nutrition Society, 40(1), 285-294.
Munir, K., & Maqsood, S. (2013). A review on role of exogenous enzyme supplementation in poultry production. Emirates Journal of Food and Agriculture, 25(1), 66-80. doi: 10.9755/ejfa.v25i1.9138
Nian, F., Guo, Y. M., Ru, Y. J., Li, F. D., & Péron, A. (2011). Effect of exogenous xylanase supplementation on the performance, net energy and gut microflora of broiler chickens fed wheat-based diets. Asian-Australasian Journal of Animal Science, 24(3), 400-406. doi: 10.5713/ajas.2011.10273
Pirgozliev, V., Bedford, S. R., & Acamovic, T. (2010). Effect of dietary xylanase on energy, amino acid and mineral metabolism, and egg production and quality in laying hens. British Poultry Science, 51(5), 639-647. doi: 10.1080/00071668.2010.514325
Ravindran, V. (2013). Feed enzymes: the science, practice, and metabolic realities. Journal Applied Poultry Research, 22(3), 628-636. doi: 10.3382/japr.2013-00739
Rehman, Z. U., Kamran, J., Abd El-Hack, M. E., Alagawany, M., Bhatti, S. A., Ahmad, G.,… Ding, C. (2017). Influence of low protein and amino acid diets with different sources of protease on performance, carcasses and nitrogen retention of broiler chickens. Animal Production Science, 58(9), 1625-1631. doi: 10.1071/AN16687
Rostagno, H. S., Albino, L. F. T., Hannas, M. I., Donzele, J. L., Sakomura, N. K., Perazzo, F. G.,… Brito, C. O. (2017). Tabelas brasileiras para aves e suínos (composição de alimentos e exigências nutricionais). Viçosa, MG: Editora UFV.
Sadeghi, A., Toghyani, M., & Gheisari, A. (2015). Effect of various fiber types and choice feeding of fiber on performance, gut development, humoral immunity, and fiber preference in broiler chicks. Poultry Science, 94(11), 2734-2743. doi: 10.3382/ps/pev292
Saeed, M., Ayasan, T., Alagawany, M., Abd El-Hack, M. E., Abdel-Latif, M., Arain, M. A., & Chao, S. (2019). The role of ß-mannanase (Hemicell) in improving poultry productivity, health hand environment. Brazilian Journal of Poultry Science, 21(3), 1-8. doi: 10.1590/1806-9061-2019-1001
Sakomura, N. K., & Rostagno, H. S. (2016). Métodos de pesquisa em nutrição de monogástricos. Jaboticabal, SP: FUNEP.
SAS University Edition (2013). Statistical analyses System-SAS. Retrieved from https://www.sas.com/pt_br/ software/university-edition/download-software.html.
Santos, V. L., Gentilini, F. P., Ladeira, S. R. L., Anciuti, M. A., & Rutz, F. (2017). Complexo enzimático e farelo de arroz integral sobre o desempenho produtivo e qualidade dos ovos de poedeiras em segundo ciclo de produção. Revista Ciência Animal Brasileira, 18(1), 1-10. doi: 10.1590/1089-6891v18e-18117
Silva, D. J., & Queiroz, A. C. (2002). Análises de alimentos (métodos químicos e biológicos). Viçosa, MG: Editora UFV.
Sinha, A. K., Kumar, V., Makkar, H. P. S., De Boeck, G., & Becker, K. (2011). Non-starch polysaccharides and their role in fish nutrition - a review. Food Chemistry, 127(4), 1409-1426. doi: 10.1016/j. foodchem.2011.02.042
Sousa, L. S., Carvalho, T. S. M., Nogueira, F. A., Saldanha, M. M., Vaz, D. P., Bertechini, A. G., Lara, L. J. C. (2019). Fiber source and xylanase on performance, egg quality, and gastrointestinal tract of laying hens. Revista Brasileira de Zootecnia, 48(1), 1-10. doi: 10.1590/rbz4820170286 Retrieved from https://www.scielo.br/pdf/rbz/v48/1806-9290-rbz-48-e20170286.pdf
Souza, K. M. R., Faria, D. E., Nakagi, V. S., Carão, A. C. P., Pacheco, B. H. C., Trevisan, R. B., & Gomes, G. A. (2012). Metabolizable energy values of diets supplemented with xylanase determined with laying hens. Revista Brasileira de Zootecnia, 41(12), 2433-2440. doi: 10.1590/S1516-35982012001200008
Stefanello, C., Vieira, S. L., Carvalho, P. S., Sorbara, J. O. B., & Cowieson, A. J. (2016). Energy and nutrient utilization of broiler chickens fed corn-soybean meal and corn-based diets supplemented with xylanase. Poultry Science, 95(8), 1881-1887. doi: 10.3382/ps / pew070
Vandeplas, S., Dauphin, R. D., Thonart, P., Théwis, A., & Beckers, Y. (2010). Effect of the bacterial or fungal origin of exogenous xylanases supplemented to a wheat-based diet on performance of broiler chickens and nutrient digestibility of the diet. Canadian Journal of Animal Science, 90(2), 221-228. doi: 10.4141/CJAS09067
Varzaru, I., Panaite, T. D., Cornescu, G. M., & Olteanu, M. (2019). Apparent faecal digestibility of essential amino acids from Ω3 pufa diets for laying hens. Brazilian Journal of Poultry Science, 21(3), 1-8. doi: 10.1590/1806-9061-2019-1025
Viana, M. T. S., Albino, L. F. T., Rostagno, H. S., Silva, E. A., Vieira, R. A., & Ribeiro, V., Jr. (2011). Utilização de xilanase em dietas compostas por milho e farelo de soja de poedeiras comerciais em postura. Revista Brasileira de Zootecnia, 40(2), 386-390. doi: 10.1590/S1516-35982011000200021
Yaghobfar, A., & Kalantar, M. (2017). Effect of non-starch polysaccharide (NSP) of wheat and barley supplemented with exogenous enzyme blend on growth performance, gut microbial, pancreatic enzyme activities, expression of glucose transporter (SGLT1) and mucin producer (MUC2) genes of broiler chickens. Revista Brasileira de Ciência Agrícola, 19(4), 629-638. doi: 10.1590/1806-9061-2016-0441
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Semina: Ciências Agrárias
![Creative Commons License](http://i.creativecommons.org/l/by-nc/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.