Enhancement of some key physiological, morphological and biochemical traits of watermelon induced by Trichoderma harzianum fungi

Authors

DOI:

https://doi.org/10.5433/1679-0359.2020v41n5supl1p2047

Keywords:

Citrullus lanatus, Chlorophyll content, Growth and quality, Photosynthetic activity.

Abstract

A pot study was performed under greenhouse condition to check the possibility that using Trichoderma harzianum could improve the growth, production and quality of watermelon genotype. Plant growth medium inoculated with T. harzianum at 1 × 104 cfu, 1.25 × 104 cfu and 1.50 × 104 cfu respectively, while un-inoculated with fungi used as control treatment. Plant growth medium inoculated with higher concentration (1.50 × 104 cfu) of T. harzianum significantly increased plant root and shoot length and brings early flowering. The higher values of plant fresh and dry weight, leaf area, stomatal conductance, transpiration rate, net photosynthesis rate and number of fruit per plant of watermelon was obtained with 1.50 × 104 cfu. However, T. harzianum levels of 1.50 × 104 cfu and 1.25 x 104 cfu produced statistically similar results for carbohydrate content, total soluble solids, vitamin A content and ?-carotene of watermelon. It was observed that plant grown in growth medium inoculated with T. harzianum has direct relation with growth and quality of watermelon. Compared to all tested levels, the higher level of T. harzianum 1.5 × 104 cfu is the most effective in improving growth, yield and quality of watermelon genotype (cv. Sugar baby).

Downloads

Download data is not yet available.

Author Biographies

Hasnain Waheed, College of Agriculture, University of Sargodha

Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan.

Muhammad Awais Khan, College of Agriculture, University of Sargodha

Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha, Pakistan.

Hafiz Muhammad Tayyab Khan, College of Agriculture, University of Sargodha

Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha, Pakistan.

Muhammad Mansoor Javaid, College of Agriculture, University of Sargodha

Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan.

Faiz Ur Rahman, Chinese Academy of Agricultural Sciences

Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

Muhammad Muzammal Aslam, Chinese Academy of Agricultural Sciences

Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

References

Abdel-Monaim, M. F., Abdel-Gaid, M. A., Zayan, S. A., & Nassef, D. M. T. (2014). Enhancement of growth parameters and yield components in eggplant using antagonism of Trichoderma spp. against Fusarium wilt disease. International Journal of Phytopathology, 3(1), 33-40. doi: 10.33687/phytopath.003.01. 0510

Akter, A., Ali, E., Islam M., Karim, R., & Razzaque, A. (2007). Effect of GA3 on growth and yield of mustard. International Journal of Sustainable Crop Production, 2(2), 16-20. Retrieved from https://www. semanticscholar. org/paper/Effect-of-GA3-on-growth-and-yield-of-mustard.-Akt

Altomare, C., Norvell, W. A., Bjorkman, T., & Harman, G. E. (1999). Solubilization of phosphates and micronutrients by plant growth promoting and biocontrol fungus Trichoderma harzianum strain 1295-22. Applied and Environmental Microbiology, 65(7), 2926-2933. doi: 10.1128/AEM.65.7.2926-2933. 1999

Arnold, A. E., Maynard, Z., & Gilbert, G. S. (2001). Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycological Research, 105(12), 1502-1507. doi: 10.1017/S0 9537 56201004956

Azarmi, R., Hajieghrari, B., & Giglou, A. (2011). Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. African Journal of Biotechnology, 10(31), 5850-5855. doi: 10.5897/ AJB10.1600

Bailey, B. A., Bae, H., Strem, M. D., Roberts, D. P., Thomas, S. E., Crozier, J.,… Holmes, K. A. (2006). Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta, 224(6), 1449-1464. doi: 10.1007/s00425-006-0314-0

Contreras-Cornejo, H. A., Macías-Rodríguez, L., Cortés-Penagos, C., & López-Bucio, J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, 149(3), 1579-1592. doi: 10.1104/pp.108.130369

Ernst, M., Mendgen, K. W., & Wirsel, S. G. R. (2003). Endophytic fungal mutualists: seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms. Molecular Plant-Microbe Interactions, 16(7), 580-587. doi: 10.1094/MPMI.2003.16.7.580

Food and Agriculture Organization (2018). FAOSTAT statistics database. Retrieved from http://www.fao. org

Guner, N., Wehner, T. C., & Pitrat, M. (2008). Overview of potyvirus resistance in watermelon. In: M. Pitrat (Ed.), Cucurbitaceae 2008, Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Avignon, France, pp. 445.

Haggag, W. M. (2010). Role of entophytic microorganisms in biocontrol of plant diseases. Life Science Journal, 7(2), 57-62. doi: 10.7537/marslsj070210.11

Hao, W., Li, H., Hu, M., Yang, L., & Rizwan-ul-Haq, M. (2011). Integrated control of citrus green and blue mold and sour rot by Bacillus amyloliquefaciens in combination with tea saponin. Postharvest Biology and Technology, 59(3), 316-323. doi: 10.1016/j.postharvbio.2010.10.002

Harman, G. E. (2000). Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease, 84(4), 377-393. doi: 10.1094/PDIS.2000.84.4.377

Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2), 190-194. doi: Harman, G. E. (2006). Overview of Mechanisms and Uses ofTrichodermaspp. Phytopathology, 96(2), 19-194. doi: 10.1094/phyto-96-0190

Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma spp. opportunistic, avirulent plant symbionts. Nature Reviews microbiology, 2(1), 43-56. doi: 10.1038/nrmicro797

Higgins, K. L., Arnold, A. E., Miadlikowska, J., Sarvate, S. D., & Lutzoni, F. (2007). Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Molecular Phylogenetic and Evolution, 42(2), 543-555. doi: 10.1016/j.ympev.2006.07. 012

Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87(1), 4-10. doi: 10.1094/PDIS. 2003.87.1.4

Khan, A. L., Hussain, J., Al-Harrasi, A., Al-Rawahi, A., & Le, I. (2013). Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Critical Reviews in Biotechnology. 35(1), 62-74. doi: 10. 3109/07388551.2013.800018

Kogel, K. H., Franken, P., & Hückelhoven, R. (2006). Endophyte or parasite-what decides? Current Opinion in Plant Biology, 9(4), 58-363. doi: 10.1016/j.pbi.2006.05.001

Kusari, S., & Spiteller, M. (2011). Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Natural Product Reports, 28(7), 1203-1207. doi: 10.1039/c1np00030f

Lindsey, D. L., & Baker, R. (1967). Effect of certain fungi on dwarf tomatoes grown under gnotobiotic conditions. Phytopathology, 57(11), 1262-1263. Retrieved from https://scholar.google.com/scholar?hl= en&as_sdt=0%2C5&q=Effect+of+certain+fungi+on+dwarf+tomatoes+grown+under+gnotobiotic+conditions&btnG=

Liu, B., Glenn, D., & Buckley, K. (2008). Trichoderma communities in soils from organic, sustainable, and conventional farms, and their relation with southern blight of tomato. Soil Biology and Biochemistry, 40(5), 1124-1136. doi: 10.1016/j.soilbio.2007.12.005

Mazhabi, M., Nemati, H., Rouhani, H., Tehranifar, A., Moghadam, E. M., Kaveh, H., & Rezaee, A. (2011). The effect of Trichoderma on polianthes qualitative and quantitative properties. The Journal of Animal and Plant Sciences, 21(3), 617-621. Retrieved from http://www.thejaps.org.pk/docs/21-3/28.pdf

Mwangi, M. W., Monda, E. O., Okoth, S. A., & Jefwa, J. M. (2011). Inoculation of tomato seedlings with Trichoderma harzianum and Arbuscular Mycorrhizal Fungi and their effect on growth and control of wilt in tomato seedlings. Brazilian Journal of Microbiology, 42(2), 508-513. doi: 10.1590/S1517-83822011000200015

Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4(1), 148. doi: 10.3389/fpubh.2016.00148

Nzanza, B., Marais, D., & Soundy, P. (2011). Tomato (Solanum lycopersicum L.) seedlings growth and development as influenced by Trichoderma harzianum and arbuscular mycorrhizal fungi. African Journal of Microbiology, 5(4), 425-431. doi: 10.5897/AJMR10.870

Nzanza, B., Marais, D., & Soundy, P. (2012). Response of tomato (Solanum lycopersicum L.) to nursery inoculation with Trichoderma harzianum and arbuscular mycorrhizal fungi under field conditions. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 62(3), 209-215. doi: 10.1080/09064710. 2011.598544

Omacini, M., Chaneton, E. J., Ghersa, C. M., & Mueller, C. B. (2001). Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature, 409(6816), 78-81. doi: 10.1038/35051070

Ozbay, N., & Newman, E. S. (2004). Effect of T. harzianum strains to colonize tomato roots and improve transplant growth. Pakistan Journal of Biological Sciences, 7(2), 253-257. doi: 10.3923/pjbs.2004. 253. 257

Palou, L., Smilanick, J., & Droby, S. (2008). Alternatives to conventional fungicides for the control of citrus postharvest green and blue molds. Stewart Postharvest Review, 4(2), 1-16. doi: 10.2212/spr.2008.2.2

Redman, R. S., Seehan, K. B., Stout, R. G., Rodriquez, R. J., & Henson, J. M. (2002). Thermotolerance generated by plant/fungal symbiosis. Science, 298(5598), 1581-1587. doi: 10.1126/science.1072191

Saleem, B. A., Malik, A. U., & Farooq, M. (2007). Effect of exogenous growth regulators application on June fruit drop and fruit quality in Citrus sinensis cv. Blood red. Pakistan Journal of Agricultural Science, 44(2), 1-6. Retrieved from https://pakjas.com.pk/papers/328.pdf

Sánchez-Torres, P., & Tuset, J. J. (2011). Molecular insights into fungicide resistance in sensitive and resistant Penicillium digitatum strains infecting citrus. Postharvest Biology and Technology, 59(2), 159-165. doi: 10.1016/j.postharvbio.2010.08.017

Schulz, B., & Boyle, C. (2005). The endophytic continuum. Mycological Research, 109(6), 661-686. doi: 10.1017/S095375620500273X

Sharma, N., Sharma, S., & Prabha, B. (2012). Postharvest biocontrol-new concepts and application. Crop stress and its management: perspectives and strategies (pp. 497-515). Dordrecht: Springer.

Shiomi, H. F., Silvia, H. S. A., Melo, I. S. de, Nunes, F. V., & Bettiol, W. (2006). Bioprospecting endophytic Bacteria for biological control of coffee leaf rust. Scientia Agricola, 63(1), 32-39. doi: 10.1590/S0103-90162006000100006

Shoresh, M., & Harman, G. (2008). The relationship between increased growth and resistance induced in plants by root colonizing microbes. Plant Signaling and Behavior, 3(9), 737-739. doi: 10.4161/psb.3.9. 6605

Singh, K. S., & Khurma, U. R. (2007). Susceptibility of six tomato cultivars to the root-knot nematode, Meloidogyne incognita. The South Pacific Journal of Natural Science, 25(1), 73-77. doi: 10.1071/ SP07013

Southgate, D. A. (1991). Determination of food carbohydrates (2a. ed). Elsevier.

Stancher, B., & Zonta, F. (1982). High-performance liquid chromatographic determination of carotene and vitamin A and its geometric isomers in foods: applications of cheese analysis. Journal of Chromatography, 238(1), 217-225. doi: 10.1016/S0021-9673(00)82728-4

Steel, R. G. D., Torrie, J. H., & Dickey, D. (1997). Principles and procedures of statistics: a biometrical approach (3nd ed.). New York: McGraw Hill Book Co. Inc.

Suryanarayanan, T. S., Venkatesan, G., & Murali, T. S. (2003). Endophytic fungal communities in leaves of tropical forest trees: diversity and distribution patterns. Current Science, 85(1), 489-493. doi: 10.1590/S0102-33062011000400008

Yedidia, I., Srivastva, A. K., Kapulnik, Y., & Chet, I. (2001). Effects of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, 235(2), 235-242. doi: 10.1023/A:1011990013955

Youssef, K., & Hussien, A. (2020). Electrolysed water and salt solutions can reduce green and blue molds while maintain the quality properties of ‘Valencia’late oranges. Postharvest Biology and Technology, 159(1), 111025. doi: 10.1016/j.postharvbio.2019.111025

Downloads

Published

2020-08-07

How to Cite

Waheed, H., Khan, M. A., Khan, H. M. T., Javaid, M. M., Rahman, F. U., & Aslam, M. M. (2020). Enhancement of some key physiological, morphological and biochemical traits of watermelon induced by Trichoderma harzianum fungi. Semina: Ciências Agrárias, 41(5supl1), 2047–2060. https://doi.org/10.5433/1679-0359.2020v41n5supl1p2047

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.