Chemical composition, aerobic stability, and fermentation pattern of white oat silage wilted with glyphosate
DOI:
https://doi.org/10.5433/1679-0359.2020v41n3p971Keywords:
Wilting, Dry Matter losses, Neutral Detergent Fiber, Ammonia Nitrogen.Abstract
White oat has good nutritional quality but is not an easy forage to ensile due to its high buffer capacity and moisture content at ensiling moment. Therefore, wilting is necessary to offset such negative aspects. However, this process demands skilled workforce and adequate machinery. In this way, chemical desiccation is a promising technology to reduce the steps needed for wilting. Thus, we aimed to evaluate the effects of glyphosate as a chemical desiccant on the nutritional quality, fermentation pattern, losses, and aerobic stability of wilted white oat (Avena sativa) silages. White oat sowing occurred in the first fortnight of May 2013. Desiccant application took place when oat reached milky-dough grain stage (96 days after planting). Glyphosate doses evaluated were 0, 500, 750, 1000, and 1250 mL ha?1. Three days after desiccation, all treatments were ensiled, and the silos were stored for 150 days. A completely randomized design was used, and all statistical procedures were performed by means of Bayesian Inference. No differences were found for lactic acid, but treated-silage pH linearly decreased. The lowest concentration of butyric acid (3.40 mg kg-1) was observed at 900.80 mL ha-1. For ammonia, the highest point (50 g kg-1) occurred at 916.51 mL ha-1. Aerobic stability was not influenced by treatments. Maximum dry matter recovery index (934 g kg-1) was observed at 864.20 mL ha-1 glyphosate. Wilted forage from treatments 500 mL ha-1, 750 mL ha-1, and 1000 mL ha-1 had greater dry matter content compared to control (320.1, 326, 301.3, and 270.7 g kg-1 respectively). Hemicellulose linearly decreased and crude protein linearly increased. The lowest concentrations of neutral detergent fiber (642.8 g kg-1) and neutral-detergent insoluble nitrogen (2.30 g kg-1) occurred at doses of 1141.32 mL ha-1 and 829.14 mL ha-1, respectively. In brief, for wilted white oat silage production, harvested at milky-dough grain stage, glyphosate application prior to ensiling up to 1000 mL ha-1 led to better conservation compared to non-treated silage.Downloads
References
Brecke, B. J., & Duke, W. B. (1980). Effect of glyphosate on intact bean plants (Phaseolus vulgaris L.) and isolated cells. Plant physiology, 66(4), 656-659. doi: 10.1104/pp.66.4.656
Bueno, A. V. I., Jobim, C. C., Rossi, M. R., Gritti, V. C., Leão, G. F. M., & Tres, T. T. (2018). Wilting whole crop black oat with glyphosate for ensiling: effects on nutritive, fermentative, and aerobic stability characteristics. Revista Brasileira de Zootecnia, 47(e20170142), 1-7. doi: 10.1590/rbz4720170142
Carneiro, M. K., Neumann, M., Heker, J., Jr., Horst, E. H., Leão, G. F. M., Galbeiro, S., & Poczynek, M. (2017). Mechanical and chemical dehydration for pre-drying of black oat silage. Semina: Ciências Agrárias, 38(2), 981-996. doi: 10.5433/1679-0359.2017v38n2p981
Cazzato, E., Laudadio, V., Corleto, A., & Tufarelli, V. (2011). Effects of harvest date, wilting and inoculation on yield and forage quality of ensiling safflower (Carthamus tinctorius L.) biomass. Journal of the Science of Food and Agriculture, 91(12), 2298-2302. doi: 10.1002/jsfa.4452
Comissão de Química e Fertilidade do Solo (2004). Manual de adubação e calagem para os Estados do Rio Grande do Sul e de Santa Catarina. (10a ed.). Porto Alegre, RS: Sociedade Brasileira de Ciência do Solo - Núcleo Regional Sul.
Daniel, J., Weib, K., Custódio, L., Sá, A. Neto, Santos, M. C., Zopollatto, M., & Nussio, L. G. (2013). Occurrence of volatile organic compounds in sugarcane silages. Animal Feed Science and Technology, 185(1-2), 101-105. doi: 10.1016/j.anifeedsci.2013.06.011
Danner, H., Holzer, M., Mayrhuber, E., & Braun, R. (2003). Acetic acid increases stability of silage under aerobic conditions. Applied and Environmental Microbiology, 69(1), 562-567. doi: 10.1128/AEM.69.1.562-567.2003.
David, D. B. de, Nörnberg, J. L., Azevedo, E. B. de, Brüning, G., Kessler, J. D., & Skonieski, F. R. (2010). Nutritional value of black and white oat cultivars ensiled in two phenological stages. Revista Brasileira de Zootecnia, 39(7), 1409-1417. doi: 10.1590/S1516-35982010000700003
Detmann, E., Souza, M. A., Valadares, S. C., Fº., Queiroz, A. C., Berchielli, T. T., Saliba, E. O. S.,... Azevedo J. A. G. (2012). Métodos para análise de alimentos. Visconde do Rio Branco, MG: Suprema.
Dewar, W. A., McDonald, P., & Whittenbury, R. (1963). The hydrolysis of grass hemicelluloses during ensilage. Journal of the Science of Food and Agriculture, 14(6), 411-417. doi: 10.1002/jsfa.2740140610
Duke, S. O., Hoagland, R. E., & Elmore, C. D. (1979). Effects of glyphosate on metabolism of phenolic compounds. Physiologia Plantarum, 46(4), 307-317. doi: 10.1111/j.1399-3054.1979.tb02626.x
Empresa Brasileira de Pesquisa Agropecuária (2012). Atlas climática da região sul do Brasil (Estados do Paraná, Santa Catarina e Rio Grande do Sul). (2a ed.). Brasília: Embrapa.
Fontaneli, R. S., Fontaneli, R. S., Santos, H. de, Nascimento, A., Jr., Minella, E., & Caierão, E. (2009). Rendimento e valor nutritivo de cereais de inverno de duplo propósito: forragem verde e silagem ou grãos. Revista Brasileira de Zootecnia, 38(11), 2116-2120. doi: 10.1590/S1516-35982009001100007
Geweke, J. (1991). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Proceedings of Valencia International Meeting on Bayesian Statistics, Peñiscola, Spain, 4.
Gomes, A. L. M., Jacovaci, F. A., Bolson, D. C., Nussio, L. G., Jobim, C. C., & Daniel, J. L. P. (2019). Effects of light wilting and heterolactic inoculant on the formation of volatile organic compounds, fermentative losses and aerobic stability of oat silage. Animal Feed Science and Technology, 247, 194-198. doi: 10.1016/j.anifeedsci.2018.11.016
Heidelberger, P., & Welch, P. D. (1983). Simulation run length control in the presence of an initial transient. Operations Research, 31(6), 1109-1144. doi: 10.1287/opre.31.6.1109
Jacobs, J., Hill, J., & Jenkin, T. (2009). Effect of stage of growth and silage additives on whole crop cereal silage nutritive and fermentation characteristics. Animal Production Science, 49(7), 595-607. doi: 10.1071/EA08244
Jobim, C. C., Nussio, L. G., Reis, R. A., & Schmidt, P. (2007). Avanços metodológicos na avaliação da qualidade da forragem conservada. Revista Brasileira de Zootecnia, 36(Supl. Especial), 101-119. doi: 10.1590/S1516-35982007001000013
Kalač, P. (2011). The effects of silage feeding on some sensory and health attributes of cow’s milk: a review. Food Chemistry, 125(2), 307-317. doi: 10.1016/j.foodchem.2010.08.077
Kung, L., Jr., Shaver, R. D., Grant, R. J., & Schmidt, R. J. (2018). Silage review: interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101(5), 4020-4033. doi:10.3168/jds.2017-13909
Kung, L., Jr., Sheperd, A., Smagala, A., Endres, K., Bessett, C., Ranjit, N., & Glancey, J. (1998). The effect of preservatives based on propionic acid on the fermentation and aerobic stability of corn silage and a total mixed ration. Journal of Dairy Science, 81(5), 1322-1330. doi: 10.3168/jds.S0022-0302(98)75695-4.
Lehmen, R. I., Fontaneli, R. S., Fontaneli, R. S., & Santos, H. P. dos. (2014). Rendimento, valor nutritivo e características fermentativas de silagens de cereais de inverno. Ciencia Rural, 44(7), 1180-1185. doi: 10.1590/0103-8478cr20130840
Li, Y., & Nishino, N. (2011). Bacterial and fungal communities of wilted Italian ryegrass silage inoculated with and without Lactobacillus rhamnosus or Lactobacillus buchneri. Letters in Applied Microbiology, 52(4), 314-321. doi: 10.1111/j.1472-765X.2010.03000.x
Meinerz, G. R., Olivo, C. J., Viégas, J., Nörnberg, J. L., Agnolin, C. A., Scheibler, R. B.,… Fontaneli, R. S. (2011). Silagem de cereais de inverno submetidos ao manejo de duplo propósito. Revista Brasileira de Zootecnia, 40(10), 2097-2104. doi: 10.1590/S1516-35982011001000005
Mertens, D. R. (2002). Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International, 85(6), 1217-1240.
Nishino, N., & Shinde, S. (2007). Ethanol and 2, 3‐butanediol production in whole‐crop rice silage. Grassland science, 53(3), 196-198. doi: 10.1111/j.1744-697X.2007.00089.x
Orcaray, L., Zulet, A., Zabalza, A., & Royuela, M. (2012). Impairment of carbon metabolism induced by the herbicide glyphosate. Journal of plant physiology, 169(1), 27-33. doi: 10.1016/j.jplph.2011.08.009
Pahlow, G., Muck, R. E., Driehuis, F., Elferink, S. J., & Spoelstra, S. F. (2003). Microbiology of ensiling. In D. R. Buxton, R. E. Muck, & J. H. Harrison (Eds.), Silage science and technology (pp. 31-93). Madison, WI: American Society of Agronomy.
Paredes, C., Roig, A., Bernal, M., Sánchez-Monedero, M., & Cegarra, J. (2000). Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes. Biology and fertility of soils, 32(3), 222-227. doi: 10.1007/s003740000239.
Paris, W., Zamarchi, G., Pavinato, P. S., & Martin, T. M. (2015). Qualidade da silagem de aveia preta sob efeito de estádios fenológicos, tamanhos de partícula e pré-murchamento. Revista Brasileira de Saúde e Produção Animal, 16(3), 486-498. doi:10.1590/S1519-99402015000300002
Pedroso, A. F., Pedroso, A. M., Barioni, W., Jr., & Souza, G. B. (2014). Evaluation of sugarcane laboratory ensiling and analysis techniques. Revista Brasileira de Zootecnia, 43(4), 169-174. doi: 10.1590/S1516-35982014000400002
Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, 4(2), 439-473. doi: 10.5194/hess-11-1633-2007
Pryce, J. (1969). A modification of the Barker-Summerson method for the determination of lactic acid. Analyst, 94(1125), 1151-1152. doi: 10.1039/AN9699401151
R Development Core Team (2014). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Rooke, J. A., & Hatfield, R. D. (2003). Biochemistry of ensiling. In D. R. Buxton, R. E. Muck, & Harrison, J. H. (Eds.), Silage science and technology (pp. 95-139). Madison, WI: American Society of Agronomy.
Rossi, R. M. (2011). Introdução aos métodos Bayesianos na análise de dados zootécnicos com uso do WinBUGS e R. Maringá, PR: Eduem.
Santos, H. dos, Jacomine, P. K. T., Anjos, L. dos, Oliveira, V. de, Oliveira, J. D. de, Coelho, M. R.,... Cunha, T. D. (2006). Sistema brasileiro de classificação de solos. Rio de Janeiro: EMBRAPA Solos.
Silva, D. J., & Queiroz, A. C. (2002). Análise de alimentos (métodos químicos e biológicos) (3a ed.). Viçosa, MG: Editora UFV.
Souza, O. M. (2014). Aplicação de procedimentos bayesianos para a análise de dados experimentais na produção animal. Tese de doutorado, Universidade Estadual de Maringá, Maringá, PR, Brasil.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583-639. doi: 10.1111/1467-9868.00353
Suzzi, G., Grazia, L., & Ferri, G. (1990). Studies on isobutyric acid-producing bacteria in silage. Letters in Applied Microbiology, 10(2), 69-72. doi: 10.1111/j.1472-765X.1990.tb00267.x
Van Soest, P. J. (1963). Use of detergents in the analysis of fibrous feeds II. A rapid method for determination of fiber and lignin. Journal of Animal Science 23(3), 838-845.
Weinberg, Z., Ashbell, G., Hen, Y., & Azrieli, A. (1995). The effect of a propionic acid bacterial inoculant applied at ensiling on the aerobic stability of wheat and sorghum silages. Journal of Industrial Microbiology and Biotechnology, 15(6), 493-497. doi: 10.1007/BF01570020
Weiss, K. (2017). Volatile organic compounds in silages – effects of management factors on their formation: a review. Slovak Journal of Animal Science, 50(1), 55-67.
Wilkinson, J., & Davies, D. (2013). The aerobic stability of silage: key findings and recent developments. Grass and Forage Science, 68(1), 1-19. doi: 10.1111/j.1365-2494.2012.00891.x
Yannicari, M., Tambussi, E., Istilart, C., & Castro, A. M. (2012). Glyphosate effects on gas exchange and chlorophyll fluorescence responses of two Lolium perenne L. biotypes with differential herbicide sensitivity. Plant Physiology and Biochemistry, 57, 210-217. doi: 10.1016/j.plaphy.2012.05.027
Zamarchi, G., Pavinato, P. S., Menezes, L. F. G. M., & Martin, T. M. (2014) Silagem de aveia branca em função da adubação nitrogenada e prémurchamento. Semina: Ciências Agrárias, 35(4), 2185-2196. doi: 10.5433/1679-0359.2014v35n4p2185
Zobiole, L. H. S., Oliveira, R. S. de, Jr., Kremer, R. J., Constantin, J., Bonato, C. M., & Muniz, A. S. (2010). Water use efficiency and photosynthesis of glyphosate-resistant soybean as affected by glyphosate. Pesticide Biochemistry and Physiology, 97(3), 182-193. doi: 10.1016/j.pestbp.2010.01.004
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.