Sensoriamento remoto como ferramenta para determinação de parâmetros biofísicos da cultura do milho semente irrigado
DOI:
https://doi.org/10.5433/1679-0359.2020v41n2p435Palavras-chave:
Biomassa, Evapotranspiração, Manejo Agrícola, Produtividade da água, SAFER.Resumo
Nos últimos anos, tem sido realizado muitos estudos que associam dados de sensoriamento remoto orbital e modelos de crescimento de cultura para fins de monitoramento da vegetação, estimativa de evapotranspiração e quantificação de parâmetros biofísicos, por exemplo o NDVI, temperatura da superfície, albedo, biomassa. O objetivo do presente estudo foi estimar a evapotranspiração (ETr), a biomassa (BIO) e a produtividade de água (PA) para a cultura do milho semente irrigado utilizando-se o algoritmo SAFER e imagens do satélite Landsat 8. Para tal, foram adquiridas oito imagens, em diferentes fases fenológica, livre de nuvem sobre a área de interesse no site United States Geological Survey e dados meteorológicos. A ETr foi estimada por meio do algoritmo SAFER, a BIO pelo modelo de Monteith e a PA pela razão BIO/ETr. A ETr apresentou valores variando entre 0 e 6 mm d-1, sendo os maiores valores coincidentes com o período de maior vigor vegetativo da cultura e os menores com a época de semeadura. Os maiores valores de biomassa são notados nas imagens aos 46 e 62 dias após a semeadura (DAS), correspondendo a 286 e 289 kg ha-1 d-1, respectivamente. A maior média da produtividade da água é observado aos 62 DAS, com 6,9 kg m-3 de água, correspondente ao período de máximo vigor vegetativo da cultura. A aplicação do modelo SAFER juntamente com imagens do Satélite Landsat 8 mostrou-se uma alternativa na identificação da variação espacial e temporal dos parâmetros biofísicos da cultura do milho, podendo auxiliar no manejo da água na agricultura irrigada e na tomada de decisão em propriedades agrícolas de grande porte.Downloads
Referências
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Moraes Gonçalves, J. L. de, & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. doi: 10.1127/0941-2948/2013/0507
Asrar, G., Myneni, R. B., & Choudhury, B. J. (1992). Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation: a modeling study. Remote Sensing of Environment, 41(2-3), 85-103. doi: 10.1016/0034-4257(92)90070-Z
Bastiaanssen, W. G. M., & Ali, S. (2003). A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agriculture, Ecosystems and Environment, 94(3), 321-340. doi: 10.1016/S0167-8809(02)00034-8
Carroll, D. A., Hansen, N. C., Hopkins, B. G., & DeJonge, K. C. (2017). Leaf temperature of maize and Crop Water Stress Index with variable irrigation and nitrogen supply. Irrigation Science, 35(6), 549-560. doi: 10.1007/s00271-017-0558-4
Coaguila, D. N., Hernandez, F. B. T., Teixeira, A. H. de C., Franco, R. A. M., & Leivas, J. F. (2017). Water productivity using SAFER - Simple Algorithm for Evapotranspiration Retrieving in watershed. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(8), 524-529. doi: 10.1590/1807-1929/agriambi. v21n8p524-529
Companhia Nacional de Abastecimento (2019). Milho. Recuperado de https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras?start=20
Gomes, B. da, Silva, B. B, Cavalcanti, E. P., & Rocha, H. R. (2009). Balanço de radiação em diferentes biomas no estado de São Paulo mediante imagens landsat 5. Geociencias, 28(2), 153-164.
Hall, A. J., & Richards, R. A. (2013). Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Research, 143(3), 18-33. doi: 10.1016/j.fcr.2012.05.014
Hatfield, J. L., Asrar, G., & Kanemasu, E. T. (1984). Intercepted photosynthetically active radiation estimated by spectral reflectance. Remote Sensing of Environment, 14(1-3), 65-75. doi: 10.1016/0034-4257(84)90008-7
Instituto Nacional de Meteorologia (2018). Normais climatológicas (1961-2018). Recuperado de http://www.inmet.gov.br/portal/index.php?r=clima/normaisClimatologicas
Kamali, M. I., & Nazari, R. (2018). Determination of maize water requirement using remote sensing data and SEBAL algorithm. Agricultural Water Management, 209(10), 197-205. doi: 10.1016/j.agwat.2018.07.035
Lizaso, J. I., Ruiz-Ramos, M., Rodríguez, L., Gabaldon-Leal, C., Oliveira, J. A., Lorite, I. J.,… Otegui, M. E. (2017). Modeling the response of maize phenology, kernel set, and yield components to heat stress and heat shock with CSM-IXIM. Field Crops Research, 214(12), 239-254. doi: 10.1016/j.fcr.2017.09.019
Mdemu, M. V., Rodgers, C., Vlek, P. L. G., & Borgadi, J. J. (2009). Water productivity (WP) in reservoir irrigated schemes in the upper east region (UER) of Ghana. Physics and Chemistry of the Earth, 34(4-5), 324-328. doi: 10.1016/j.pce.2008.08.006
Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9(3), 747-766. doi: 10.2307/2401901
Moran, M. S., Maas, S. J., & Pinter, P. J. (1995). Combining remote sensing and modeling for estimating surface evaporation and biomass production. Remote Sensing Reviews, 12(3-4), 335-353. doi: 10.1080/02757259509532290
Parent, B., & Tardieu, F. (2012). Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytologist, 194(3), 760-774. doi: 10.1111/j.1469-8137.2012.04086.x
Peng, J., Fan, W., Xu, X., Wang, L., Liu, Q., Li, J., & Zhao, P. (2015). Estimating crop Albedo in the application of a physical model based on the law of energy conservation and spectral invariants. Remote Sensing, 7(11), 15536-15560. doi: 10.3390/rs71115536
Silva, B. B. da, Braga, A. C., Braga, C. C., Oliveira, L. M. M. de, Montenegro, S. M. G. L., & Barbosa, B., Jr. (2016). Procedures for calculation of the albedo with OLI-Landsat 8 images: Application to the Brazilian semi-arid. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(1), 3-8. doi: 10.1590/1807-1929/agriambi.v20n1p3-8
Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6a ed.). Porto Alegre, RS: Artmed.
Teixeira, A. H. de C. (2010). Determining regional actual evapotranspiration of irrigated crops and natural vegetation in the São Francisco River Basin (Brazil) Using remote sensing and penman-monteith equation. Remote Sensing, 2(5), 1287-1319. doi: 10.3390/rs0251287
Teixeira, A. H. de C., Bastiaanssen, W. G. M., Ahmad, M. D., & Bos, M. G. (2009). Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil. Part B: Application to the regional scale. Agricultural and Forest Meteorology, 149(3-4), 477-490. doi: 10.1016/j.agrformet.2008.09.014
Teixeira, A. H. de C., & Leivas, J. F. (2017). Determinação da produtividade da água com imagens Landsat 8 na região semiárida do Brasil. Conexões - Ciência e Tecnologia, 11(1), 22-34. doi: 10.21439/conexoes.v11i1.1064
Teixeira, A. H. de C., Leivas, J. F., Andrade, R. G., & Hernandez, F. B. T. (2015). Water productivity assessments with landsat 8 images in the Nilo Coelho irrigation scheme. IRRIGA, 1(2), 1-10. doi: 10.15809/irriga.2015v1n2p01
Toureiro, C., Serralheiro, R., Shahidian, S., & Sousa, A. (2017). Irrigation management with remote sensing: evaluating irrigation requirement for maize under Mediterranean climate condition. Agricultural Water Management, 184(4), 211–220. doi: 10.1016/j.agwat.2016.02.010
Wang, N., Wang, E., Wang, J., Zhang, J., Zheng, B., Huang, Y., & Tan, M. (2018). Modelling maize phenology, biomass growth and yield under contrasting temperature conditions. Agricultural and Forest Meteorology, 250-251(2017), 319-329. doi: 10.1016/j.agrformet.2018.01.005
Wu, X., Wen, J., Xiao, Q., Yu, Y., You, D., & Hueni, A. (2017). Assessment of NPP VIIRS Albedo over heterogeneous crop land in Northern China. Journal of Geophysical Research: Atmospheres, 122(24), 13,138-154. doi: 10.1002/2017JD027262
Yan, W., & Hunt, L. A. (1999). An equation for modelling the temperature response of plants using only the cardinal temperatures. Annals of Botany, 84(5), 607-614. doi: 10.1006/anbo.1999.0955
Yuan, M., Zhang, L., Gou, F., Su, Z., Spiertz, J. H. J., & Van Der Werf, W. (2013). Assessment of crop growth and water productivity for five C3 species in semi-arid Inner Mongolia. Agricultural Water Management, 122(5), 28-38. doi: 10.1016/j.agwat.2013.02.006
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Semina: Ciências Agrárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.