Variabilidade espaço-temporal de parâmetros biofisícos do milho irrigado utilizando sensoriamento remoto orbital
DOI:
https://doi.org/10.5433/1679-0359.2021v42n4p2181Palavras-chave:
Ciclo fenológico, Manejo da irrigação, Modelos agrometeorológicos.Resumo
Objetivou-se com o presente estudo estimar a evapotranspiração real da cultura por meio do modelo SAFER, calcular o Kc em função do NDVI e a biomassa da cultura do milho irrigado, utilizando para isso imagens dos sensores Operacional Land Imager (OLI) e Thermal Infrared Sensor (TIRS) do satélite Landsat-8. Foram selecionados os pivôs 21 ao 26 de uma fazenda comercial localizada nos municípios de Bom Jesus da Lapa e Serra do Ramalho, situadas no oeste do estado da Bahia, Brasil. As épocas de semeadura dentro dos pivôs são ordenadas em Norte e Sul ou Leste e Oeste, iniciando o cultivo primeiro em uma das orientações e posteriormente na outra. Verifica-se com base na relação entre NDVI e KcFAO, um alto valor do coeficiente de determinação (R2=0,7921), evidenciando que a variância do KcFAO pode ser explicada pelo NDVI na cultura do milho. Considerando-se os pivôs centrais com diferentes datas de plantio, os valores dos pixels da ETc variaram de 0,0 a 6,0 mm d-1 durante o ciclo fenológico. Os maiores valores foram encontrados para o DOY 199, correspondendo ao DAS em torno de 100 dias. Os valores mais baixos da BIO ocorrem aos 135 DOY em torno de 20 DAS. É observado que existe uma relação entre a ETc e BIO, os DOY mais elevados da BIO são equivalentes com os maiores valores de ETc. Além desta relação, a BIO é fortemente influenciada pela disponibilidade hídrica no solo.Downloads
Referências
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration - guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56 (9nd ed.). Rome: Food and Agriculture Organization of the United Nations.
Althoff, D., Santos, R. A., Bazame, H, C., Cunha, F. F., & Filgueiras, R. (2019). Improvement of hargreaves-samani reference evapotranspiration estimates with local calibration. Water, 11(11), 22-72. doi: 10. 3390/w11112272
Bastiaanssen, W. G. M., & Ali, S. (2003). A new crop yield forecasting model based on satellite meas urements applied across the Indus Basin, Pakistan. Agriculture, Ecosystems e Environment, 94(3), 321-340. doi: 10.1016/S0167-8809(02)00034-8
Bernardo, S., Mantovani, E. C., Silva, D. D., & Soares, A. A. (2019). Manual de irrigação (9a ed.). Viçosa, MG: Imprensa Universitária da UFV.
Bezerra, J. M., Moutra, G. B. A., Silva, B. B., Lopes, P. M. O., & Silva, E. F. F. (2014). Parâmetros biofísicos obtidos por sensoriamento remoto em região semiárida do estado do Rio Grande do Norte, Brasil. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(1), 73-84.
Bhuiyan, C., Saha, A. K., Bandyopadhyay, N., & Kogan, F. N. (2017). Analyzing the impact of thermal stress on vegetation health and agricultural drought - a case study from Gujarat, India. Journal GIScience & Remote Sensing, 54(5), 1943-7226. doi: 10.1080/15481603.2017.1309737
Congedo, L. (2016). Semi-automatic classification plugin documentation: release 5.0.1.1. Roma: Sapienza University of Rome.
Formaggio, A. R., & Sanches, I. A. (2017). Sensoriamento remoto na agricultura. São Paulo: Oficina de Textos.
Frenck, G., Leitinger, G., Obojes, N., Hofmann, M., Newesely, C., Deutschmann, M.,... Tasser, E. (2018). Community-specific hydraulic conductance potential of soil water decomposed for two Alpine grasslands by small-scale lysimetry. Biogeosciences, 15(1), 1065-1078. doi: 10.5194/bg-15-1065-2018
Higuchi, N., Santos, J., Ribeiro, R. J., Minette, L., & Biot, Y. (1998) Biomassa da parte aérea da vegetação de floresta tropical úmida de terra-firme da Amazônia Brasileira. Acta Amazônica, 28(1), 153-165. doi: 10.1590/1809-43921998282166
Jensen, J. R., Bryan, M. L., Friedman, S. Z., Henderson, F. M., Holz, R. K., Lindgren. D.,… Wray, J. R. (1983). Urban/suburban land use analysis. In J. E. Estes (Ed.), Manual of remote sensing (vol. 2, pp. 1571-666, 2nd ed.). Falls Church, VA: American Society of Photogrammetry.
Martins, C. L., Busato, C., Silva, S. F., Rodrigues, W. N., & Reis, E. F. (2013). Avaliação do desempenho de sistemas de irrigação no sul do Estado do Espírito Santo. RevistaAgro@mbiente, 7(2), 236-241. doi: 10. 18227/1982-8470ragro.v7i2.1069
Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology 9(3), 747-766. doi: 10.2307/2401901
Pandey, P. K., Dabral, P. P., & Pandey, V. (2016). Evaluation of reference evapotranspiration methods for the Northeastern region of India. International Soil and Water Conservation Research, 4(1), 56-67. doi: 10.1016/j.iswcr.2016.02.003
Ponzoni, F. J., & Shimabukuro, Y. E. (2007). Sensoriamento remoto no estudo da vegetação. São José dos Campos: Ed. Parêntese.
QGIS Development Team (2015). QGIS Geographic information system (3.16). Retcovered from http:// www.qgis.org/
R Core Team (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Ribeiro, R. B., Filgueiras, R., Ramos, M. C. A., Almeida, L. T., Generoso, T. N., & Monteiro, L. I. B. (2017). Variação espacial-temporal da condição da vegetação na agricultura irrigada por meio de imagens sentinela. Revista Brasileira de Agricultura Irrigada, 11(1), 1884-1893. doi: 10.7127/rbai.v11 n600648
Rissini, A. L. L., Kawakami, J., Genú, A. M. (2015). Índice de vegetação por diferença normalizada e produtividade de cultivares de trigo submetidas a doses de nitrogênio. Revista Brasileira de Ciência do Solo, 39(6), 1703-1713. doi: 10.1590/01000683rbcs20140686
Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the great plains with ERTS. Proceedings of the Earth Resources Technology Satellite-1, Symposium, Greenbelt, 3.
Sá, P. C. C., Sobrinho, J. S., Silva, S. T. A., Ferreira, R. C., & Moura, M. S. B. (2016). Estimativa do saldo de radiação em cultivo irrigado de cana-de-açúcar utilizando dados de sensoriamento remoto orbital. Revista Brasileira de Geografia Física, 9(7), 2164-2178. doi: 10.5935/1984-2295.20160153
Santos, R. A., Venancio, L. P., Filgueiras, R., & Cunha, F. F. (2020). Remote sensing as a tool to determine biophysical parameters of irrigated seed corn crop. Semina: Ciências Agrárias, 41(2), 435-446. doi: 10. 5433/1679-0359.2020v41n2p435
Silva, A. P. N., Moura, G. B. A., Giongo, P. R., & Silva, B. B. (2011). Albedo de superfície estimado a partir de imagens Landsat 5 - TM no Semiárido Brasileiro. Revista de Geografia, 27(1), 154-168.
Silva, B. B., Braga, A. C., Braga, C. C., Oliveira, L. M. M., Montenegro, S. M. G., & Barbosa, B., Jr. (2016). Procedures for calculation of the albedo with OLI-Landsat 8 images: application to the Brazilian semi-arid. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(1), 3-8. doi: 10.1590/1807-1929
Teixeira, A. H. C. (2010). Determining regional actual evapotranspiration of irrigated and natural vegetation in the São Francisco riverbasin (Brazil) using remote sensingan Penman-Monteith equation. Remote Sensing, 2(5), 1287-1319. doi: 10.3390/rs0251287
Teixeira, A. H. C., & Leivas, J. F. (2017). Determinação da produtividade da água com imagens Landsat 8 na região Semiárida do Brasil. Revista Conexões Ciência e Tecnologia, 11(1), 22-34. doi: 10.21439/ conexoes.v11i1.1064
Teixeira, A. H. C., Leivas, J. F., Andrade, R. G., & Hernandez, F. B. T. (2015). Water productivity assessments with Landsat 8 images in the Nilo Coelho irrigation scheme. Revista Irriga, 1(2), 1-10. doi: 10.15809/irriga.2015v1n2p01
Teixeira, A. H. C., Scherer-Warren, M., Hernandez, F. B., Andrade, R. G., & Leivas, J. F. (2013). Large-scale water productivity assessments with modis images in a changing semi-arid environment: a brazilian case study. Remote Sensing, Multidisciplinary Digital Publishing Institute, 5(11), 5783-5804. doi: 10.3390/rs5115783
Toureiro, C., Serralheiro, R., Shahidian, S., & Sousa, A. (2017). Irrigation management with remote sensing: Evaluating irrigation requirement for maiz eunder Mediterranean climate condition. Agricultural Water Management, 184(1), 211-220. doi: 10.1016/j.agwat.2016.02.010
United States Geological Survey (2015). Landsat Project Description. Recuperado de http://landsat.usgs. gov/about_project_descriptions.php.
Vanhellemont, Q., & Ruddick, K. (2014). Turbid wakes associated with of shore wind turbines observed with landsat 8. Remote Sensing of Environment, 145(1), 105-115. doi: 10.1016/j.rse.2014.01.009
Veloso, G. A., Ferreira, M. E., Rosa, R., & Silva, B. B. (2015). Determinação do albedo de superfície em áreas irrigadas do projeto Jaíba (Minas Gerais) mediante imagens Landsat 5 - TM. Revista R. Ra’eGa, 35(1), 126-146. doi: 10.5380/raega.v35i0.39757
Wang, X., Ma, M., Huang, G., Veroustraete, F., Zhang, Z., Song, Y., & Tan, J. (2012). Vegetation primary production estimation at maize and alpine meadow over the Heihe River Basin, China. International Journal of Applied Earth Observation Geoinformation, 17(1), 94-101. doi: 10.1016/j.agrformet.2018. 01.005
Yuan, M., Zhang, L., Gou, F., Su, Z., Spiertz, J. H. J., & Van. W. W. (2013). Assessment of crop growth and water productivity for five C3 species in semi-arid Inner Mongolia. Agricultural Water Management, 122(5), 28-38. doi: 10.1016/j.agwat.2013.02.006
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Semina: Ciências Agrárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.