Desempenho germinativo de sementes de Syagrus romanzoffiana submetidas aos estresses hídrico e salino
DOI:
https://doi.org/10.5433/1679-0359.2024v45n5p1563Palavras-chave:
Arecaceae, Estresse abiótico, NaCl, PEG 6000, Potencial osmótico, Tolerância.Resumo
A propagação da palmeira jerivá (Syagrus romanzoffiana) ocorre por meio de sementes, cuja germinação se dá de forma desuniforme e lenta. Assim, as sementes encontram-se sujeitas a múltiplos estresses, como o hídrico e o salino, que limitam a embebição e suas chances de germinação. Objetivou-se avaliar a germinação de sementes da palmeira jerivá submetidas aos estresses hídrico e salino. O delineamento utilizado foi o inteiramente casualizado, com quatro repetições, em esquema fatorial (2 × 5), sendo dois agentes osmocondicionantes (NaCl e PEG 6000) e cinco potenciais osmóticos (0,0 - controle, -0,3, -0,6, -0,9 e -1,2 MPa). Ao final do experimento, calculou-se: porcentagem de germinação, índice de velocidade de germinação e tempo médio de germinação. Com relação aos potenciais osmóticos, para porcentagem de germinação, houve efeito significativo de maneira isolada somente para NaCl, com diminuição na porcentagem de acordo com a redução do potencial osmótico da solução. A partir do potencial -0,6 MPa, houve redução significativa na germinação das sementes. O índice de velocidade e o tempo médio de germinação das sementes foram afetados negativamente pelos potenciais osmóticos das soluções, independente do agente osmocondicionante. No estresse hídrico simulado pelo PEG 6000, as sementes começaram a germinar mais tarde e por um período mais prolongado, quando comparado àquelas submetidas ao estresse de NaCl. Concluiu-se que as sementes da palmeira jerivá apresentam tolerância aos estresses hídrico e salino, pois conseguiram germinar até mesmo no potencial osmótico mais negativo (-1,2 MPa).
Downloads
Referências
Akram, R., Fahad, S., Masood, N., Rasool, A., Ijaz, M., Ihsan, M. Z., Maqbool, M. M., Ahmad, S., Hussain, S., Ahmed, M., Kaleem, S., Sultana, S. R., Mubeen, M., Saud, S., Kamran, M., & Nasim, W. (2019). Plant growth and morphological changes in rice under abiotic stress. In M. Hasanuzzaman, M. Fujita, K. Nahar, & J. K. Biswas (Eds.), Advances in rice research for abiotic stress tolerance (pp. 69-85) Sawston. DOI: https://doi.org/10.1016/B978-0-12-814332-2.00004-6
Almeida, C. D. S., Guariz, H. R., Pinto, M. A. B., & Almeida, M. F. D. (2020). Germination of creole maize and fava bean seeds under salt stress. Revista Caatinga, 33(3), 853-859. doi: 10.1590/1983-21252020v33n329rc DOI: https://doi.org/10.1590/1983-21252020v33n329rc
Al-Qurainy, F., Khan, S., Tarroum, M., Nadeem, M., Alansi, S., Alshameri, A., & Gaafar, A. R. (2020). Comparison of salt tolerance between two potential cultivars of Phoenix dactylifera L. growing in Saudi Arabia. Pakistan Journal of Botany, 52(3), 753-761. doi: 10.30848/PJB2020-3(16) DOI: https://doi.org/10.30848/PJB2020-3(16)
Barbosa, J. C., & Maldonado, W., Jr. (2015). AgroEstat - sistema para análises estatísticas de ensaios agronômicos - versão 1.1.0.711.
Batista, G. S., Mazzini-Guedes, R. B., Pivetta, K. F. L., Pritchard, H. W., & Marks, T. (2016). Seed desiccation and salinity tolerance of palm species Carpentaria acuminata, Dypsis decaryi, Phoenix canariensis, and Ptychosperma elegans. Australian Journal of Crop Science, 10(12), 1630-1634. doi: 10.21475/ajcs.2016.10.12. PNE204 DOI: https://doi.org/10.21475/ajcs.2016.10.12.PNE204
Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds: physiology of development, germination and dormancy (3nd ed.). Springer. DOI: https://doi.org/10.1007/978-1-4614-4693-4
Bhanuprakash, K., Yogeesha, H. S. (2016). Seed Priming for Abiotic Stress Tolerance: An Overview. In Rao, N., Shivashankara, K., Laxman, R. (Eds.) Abiotic Stress Physiology of Horticultural Crops (pp. 103-117), New Delhi. doi: 10.1007/978-81-322-2725-0_6 DOI: https://doi.org/10.1007/978-81-322-2725-0_6
Bousba, R., Bounar, R., Sedrati, N., Lakhal, R., Hamla, C., & Rached-Kanouni, M. (2021). Effects of osmotic stress induced by polyethylene glycol (Peg) 6000 and mannitol on seed germination and seedling growth of durum wheat. Journal of Bioresource Management, 8(3), 57-66. doi: 10.35691/JBM.1202.0195 DOI: https://doi.org/10.35691/JBM.1202.0195
Bruno, M. M. A., Massi, K. G., Vidal, M. M., & Hay, J. V. (2019). Reproductive phenology of three Syagrus species (Arecaceae) in a tropical savanna in Brazil. Flora, 252(1), 18-25. doi: 10.1016/j.flora.2019.02.002 DOI: https://doi.org/10.1016/j.flora.2019.02.002
Chen, D., Wang, S., Yin, L., & Deng, X. (2018). How does silicon mediate plant water uptake and loss under water deficiency? Frontiers in Plant Science, 9(281), 1-7. doi: 10.3389/fpls.2018.00281 DOI: https://doi.org/10.3389/fpls.2018.00281
Duarte, M. M., Kratz, D., Carvalho, R. L. L., & Nogueira, A. C. (2018). Influência do estresse hídrico na germinação de sementes e formação de plântulas de angico branco. Advances in Forestry Science, 5(3), 375-379. doi: 10.34062/afs.v5i3.5521
Ferreira, K. B., Souza, A. M. B., Muniz, A. C. C., & Pivetta, K. F. L. (2021). Germination of palm seeds under periods of rehydration. Ornamental Horticulture, 27(4), 446-452. doi: 10.1590/2447-536X.v27i4.2303 DOI: https://doi.org/10.1590/2447-536x.v27i4.2303
Goudel, F., Shibata, M., Coelho, C. M. M., & Miller, P. R. M. (2013). Fruit biometry and seed germination of Syagrus romanzoffiana (Cham.) Glassm. Acta Botanica Brasilica, 27(1), 147-154. doi: 10.1590/S0102-33062013000100015 DOI: https://doi.org/10.1590/S0102-33062013000100015
Inocente, M. C., & Barbedo, C. J. (2019). Germination of Eugenia brasiliensis, E. involucrata, E. pyriformis, and E. uniflora (Myrtaceae) under water-deficit conditions. Journal of Seed Science, 41(1), 76-85. doi: 10.1590/2317-1545v41n1212109 DOI: https://doi.org/10.1590/2317-1545v41n1212109
Labouriau, L. G. (1983). A germinação de sementes. Secretaria Geral da Organização dos Estados Americanos.
Leal, C. C. P., Torres, S. B., Dantas, N. B. L., Aquino, G. S. M., & Alves, T. R. A. (2020). Water stress on germination and vigor of ‘mofumbo’ (Combretum leprosum Mart.) seeds at different temperatures. Revista Ciência Agronômica, 51(1), e20186357. doi: 10.5935/1806-6690.20200013 DOI: https://doi.org/10.5935/1806-6690.20200013
Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: a review. Biochemical and Biophysical Research Communications, 495(1), 286-291. doi: 10.1016/j.bbrc.2017.11.043 DOI: https://doi.org/10.1016/j.bbrc.2017.11.043
Lima, A. T., & Meiado, M. V. (2017). Discontinuous hydration alters seed germination under stress of two populations of cactus that occur in different ecosystems in Northeast Brazil. Seed Science Research, 27(4), 292-302. doi: 10.1017/S0960258517000241 DOI: https://doi.org/10.1017/S0960258517000241
Lucchese, J. R., Bovolini, M. P., Hilgert, M. A., Brose, C. B., Avrella, E. D., & Lazarotto, M. (2018). Estresse salino e hídrico na germinação e crescimento inicial de plântulas de Toona ciliata M. Roem. var. australis. Ciência Florestal, 28(1), 141-149. doi: 10.5902/1980509831633 DOI: https://doi.org/10.5902/1980509831633
Maguire, J. D. (1962). Speed of germination-aid in selection evaluation for seedling emergence and vigour. Crop Science, 2(1), 176-177. doi: 10.2135/cropsci1962.0011183X000200020033x DOI: https://doi.org/10.2135/cropsci1962.0011183X000200020033x
Marcos, J., Fº. (2015). Fisiologia de sementes de plantas cultivadas (2a ed.). FEALQ.
Meerow, A. W., & Broschat, T. K. (2015). Palm seed germination. UF/IFAS Extension.
Ministério da Agricultura Pecuária e Abastecimento (2009). Regras para análise de sementes. MAPA/ACS.
Nascimento, L. M., Vendruscolo, E. P., Campos, L. F. C., Garcia, L. G. C., Pires, L. L., & Seleguini, A. (2019). Pre-depulping and depulping treatments and the emergence of queen palm seeds (Syagrus romanzoffiana [Cham.] Glassman). Revista Colombiana de Ciências Hortícolas, 13(3), 466-472. doi: 10.17584/rcch.2019v13i3.8363 DOI: https://doi.org/10.17584/rcch.2019v13i3.8363
Noblick, L. R. (2017). A revision of the genus Syagrus (Arecaceae). Phytotaxa, 294(1), 1-262. doi: 10.11646/ phytotaxa.294.1.1 DOI: https://doi.org/10.11646/phytotaxa.294.1.1
Oliveira, G. M., Silva, F. F. S., Araujo, M. N., Costa, D. C. C., Gomes, S. E. V., Matias, J. R., Angelotti, F., Cruz, C. R. P., Seal, C. E., & Dantas, B. F. (2019). Environmental stress, future climate, and germination of Myracrodruon urundeuva seeds. Journal of Seed Science, 41(1), 32-43. doi: 10.1590/2317-1545v41n1191945 DOI: https://doi.org/10.1590/2317-1545v41n1191945
Oliveira, T. G. S., José, A. C., Ribeiro, L. M., & Faria, J. M. R. (2015). Longevity and germination of Syagrus romanzoffiana (Arecaceae) seeds and its ecological implications. Revista de Biologia Tropical, 63(2), 333-340. doi: 10.15517/rbt.v63i2.15614 DOI: https://doi.org/10.15517/rbt.v63i2.15614
Oliveira, T. F., Santos, H. O. D., Vaz-Tostes, D. P., Cavasin, P. Y., Rocha, D. K., & Tirelli, G. V. (2021). Protective action of priming agents on Urochloa brizantha seeds under water restriction and salinity conditions. Journal of Seed Science, 43(1), e202143010. doi. 10.1590/2317-1545v43237830 DOI: https://doi.org/10.1590/2317-1545v43237830
Santos, R. N., Jr., & Silva, A. G. (2020). Estresse osmótico na germinação de sementes de Samanea tubulosa (Benth.) Barneby & J. W. Grimes. Ciência Florestal, 30(4), 971-979. doi: 10.5902/1980509830946 DOI: https://doi.org/10.5902/1980509830946
Sarmento, E. C. S., Oliveira, F. S., Cabral, F. A. S., Oliveira, D. F., & Dutra, A. S. (2020). Physiological potential of sorghum seeds under discontinuous hydration and water deficiency conditions. Revista Ciência Agronômica, 51(4), 1-11. doi: 10.5935/1806-6690.20200069 DOI: https://doi.org/10.5935/1806-6690.20200069
Sher, A., Sarwar, T., Nawaz, A., Ijaz, M., Sattar, A., & Ahmad, S. (2019). Methods of seed priming. In Hasanuzzaman, M., & Fotopoulos, V. (Eds.), Priming and pretreatment of seeds and seedlings (pp. 1-10). Singapore. DOI: https://doi.org/10.1007/978-981-13-8625-1_1
Silva, A. R. A., Bezerra, F. M. L., Lacerda, C. F., Sousa, C. H. C., & Bezerra, M. A. (2017). Physiological responses of dwarf coconut plants under water deficit in salt-affected soils. Revista Caatinga, 30(2), 447-457. doi: 10.1590/1983-21252017v30n220rc DOI: https://doi.org/10.1590/1983-21252017v30n220rc
Silva, D. C., Alves, E. U., Santos-Moura, S. S., Ursulino, M. M., & Araújo, L. R. (2019a). Estresse salino e diferentes temperaturas alteram a fisiologia em sementes de Clitoria fairchildiana Howard. Ciência Florestal, 29(3), 1129-1141. doi: 10.5902/1980509813588 DOI: https://doi.org/10.5902/1980509813588
Silva, E. C., Silva, L. S., Galvão, C. S., Ferreira, N. C. F., Masiero, M. A., Oliveira, L. A. B., Reis, W., & Menechini, W. (2021). Qualidade fisiológica de sementes de feijão mungo submetidas ao estresse salino. Revista Brasileira de Agropecuária Sustentável, 11(1), 207-212. doi: 10.21206/rbas.v11i1.12709
Silva, M. F., Araujo, E. F., Silva, L. J., Amaro, H. T. R., Dias, L. A. S., & Dias, D. C. F. S. (2019b). Tolerance of crambe (Crambe abyssinica Hochst) to salinity and water stress during seed germination and initial seedling growth. Ciência e Agrotecnologia, 43(1), e025418. doi: 10.1590/1413-7054201943025418 DOI: https://doi.org/10.1590/1413-7054201943025418
Soares, J. R., Ribeiro, L. M., Mercadante-Simões, M. O., & Lopes, P. S. N. (2021). Hydration cycles and overcoming dormancy in Butia capitata (Arecaceae) diaspores. Trees, 35(5), 1511-1524. doi: 10.1007/s00468-021-02132-9 DOI: https://doi.org/10.1007/s00468-021-02132-9
Soundararajan, P., Manivannan, A., & Jeong, B. R. (2019). Different antioxidant defence systems in halophytes and glycophytes to overcome salinity stress. In B. Gul, B. Böer, M. Khan, M. Clüsener-Godt, & A. Hameed (Eds.), Sabkha ecosystems, tasks for vegetation science (vol. VI, 49, pp. 335-347). Dordrecht. DOI: https://doi.org/10.1007/978-3-030-04417-6_20
Vieira, G. R., Souza, A. M. B., Campos, T. S., & Pivetta, K. F. L. (2023). Germination of Dypsis decaryi seeds under salt stress. Semina: Ciências Agrárias, 44(3), 945-956. doi: 10.5433/1679-0359.2022v44n3p945 DOI: https://doi.org/10.5433/1679-0359.2023v44n3p945
Weirich, P. H., Neto, Delalibera, H. C., Souza, N. M., Martini, J., & Gomes, J. A. (2020). Syagrus romanzoffiana (Cham.) Glass. palm fruit energy capacity. Energia na Agricultura, 35(2), 225-235. doi: 10.17224/EnergAgric.2020v35n2p225-235 DOI: https://doi.org/10.17224/EnergAgric.2020v35n2p225-235
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Antonio Maricélio Borges de Souza, Thiago Souza Campos, Guilherme Rodrigues Vieira, Mariana Martins da Silveira, André Caturelli Braga, Murilo Paes Patricio, Renata Bachin Mazzini-Guedes, Marcos Vieira Ferraz, Kathia Fernandes Lopes Pivetta

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.
Dados de financiamento
-
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Números do Financiamento 148332/2019-6 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Números do Financiamento 310500/2018-4