Plant extracts supplied to pre-weaned dairy calves influence their redox status
DOI:
https://doi.org/10.5433/1679-0359.2024v45n1p193Keywords:
Green tea, Health, Jersey, Oregano.Abstract
This study aimed to evaluate the effects of the separate provision of green and oregano tea extracts on the biomarkers of the redox state and health condition in pre-weaned Jersey calves from birth to 60 days of life. Two experiments following the complete randomized design with measures repeated in time were carried out using 38 Jersey calves (17 and 21 calves in experiments 1 and 2, respectively). Calves were distributed according to date of birth into one of three groups: control (CON) - with no addition of extracts; oregano extract (OE) - addition of 70 mg of oregano extract/kg of body weight (BW) and green tea extract (GT) - addition of 35 mg of green tea extract/kg of BW. Eight biomarkers of the redox state were evaluated on days 1, 30, and 60 after birth, and variables measured on day 1 were used as covariates. Body temperature and occurrence of diarrhea were evaluated every two days. Regarding the main results, the supply of oregano extract reduced the concentration of oxidizing biomarkers, such as DCFP (oxidation of dichlorofluorescein in plasma) and carbonyl, and increased the activity of antioxidant enzymes, such as GPx and catalase. Green tea extract only reduced DCFP and tended to improve catalase activity. Calves remained healthy (no fever and only a few days with diarrhea), and plant extracts did not improve their health condition. The addition of green tea and oregano extracts into the diet has a positive effect on redox status in pre-weaned Jersey calves.
Downloads
References
Aebi, H. (1984). Catalase in vitro. Methods Enzymology, 105(1), 121-126. doi: 10.1016/s0076-6876(84)050 16-3 DOI: https://doi.org/10.1016/S0076-6879(84)05016-3
Aksenov, M. Y., & Markesbery, W. R. (2001). Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neuroscience Letters, 302(2-3), 141-145. doi: 10.1016/S0304-3940(01)01636-6 DOI: https://doi.org/10.1016/S0304-3940(01)01636-6
Browne, R. W., & Armstrong, D. (1998). Reduced glutathione and glutathione disulfide. Methods in Molecular Biology, 108(1), 347-352. doi: 10.1385/0-89603-472-0:347 DOI: https://doi.org/10.1385/0-89603-472-0:347
Chase, C. C. L., Hurley, D. J., & Reber, A. J. (2008). Neonatal immune development in the calf and its impact on vaccine response. Veterinary Clinics of North America: Food Animal Practice, 24(1), 87-104. doi: 10.1016/j.cvfa.2007.11.001 DOI: https://doi.org/10.1016/j.cvfa.2007.11.001
Doğan, E., Merhan, O., Erdağ, D., Karamancı, E., Bozukluhan, K., & Doğan, A. N. C. (2021). The effect of vitamin C on oxidant and antioxidant parameters in anthrax vaccine administered cattle. Van Veterinary Journal, 32(3), 109-113. doi: 10.36483/vanvetj.958358 DOI: https://doi.org/10.36483/vanvetj.958358
Elshahawy, I. I. (2018). Oxidantantioxidant status in calves supplemented with green tea extract. International Journal of Animal and Veterinary Sciences, 12(4), 108-111. doi: 10.5281/zenodo.1316299
Fu, Z. L., Yang, Y., Ma, L., Malmuthuge, N., Guan, L. L., & Bu, D. P. (2023). Dynamics of oxidative stress and immune responses in neonatal calves during diarrhea. Journal of Dairy Science, 107(2), 1286-1298. doi: 10.3168/jds.2023-23630 DOI: https://doi.org/10.3168/jds.2023-23630
Gulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94(3), 651-715. doi: 10.1007/s00204-020-02689-3 DOI: https://doi.org/10.1007/s00204-020-02689-3
He, F., Liu, R., Tian, G., Qi, Y., & Wang, T. (2023). Ecotoxicological evaluation of oxidative stress-mediated neurotoxic effects, genetic toxicity, behavioral disorders, and the corresponding mechanisms induced by fluorene-contaminated soil targeted to earthworm (Eisenia fetida) brain. Science of the Total Environment, 871(1), 162014. doi: 10.1016/j.scitotenv.2023.162014 DOI: https://doi.org/10.1016/j.scitotenv.2023.162014
Heisler, G., Fischer, V., Paris, M., Angelo, I. D. V., Panazzolo, D. M., & Zanela, M. B. (2020). Effect of green tea and oregano extracts fed to preweaned Jersey calves on behavior and health status. Journal of Veterinary Behavior, 37(1), 36-40. doi: 10.1016/j.jveb.2020.03.002 DOI: https://doi.org/10.1016/j.jveb.2020.03.002
Hulbert, L. E., & Moisá, S. J. (2016). Stress, immunity, and the management of calves 1. Journal of Dairy Science, 99(4), 3199-3216. doi: 10.3168/jds.2015-10198 DOI: https://doi.org/10.3168/jds.2015-10198
Ishihara, N., Chu, D. C., Akachi, S., & Juneja, L. R. (2001). Improvement of intestinal microflora balance and prevention of digestive and respiratory organ diseases in calves by green tea extracts. Livestock Production Science, 68(2-3), 217-229. doi: 10.1016/S0301-6226(00)00233-5 DOI: https://doi.org/10.1016/S0301-6226(00)00233-5
Jordán, M. J., Moñino, M. I., Martínez, C., Lafuente, A., & Sotomayor, J. A. (2010). Introduction of distillate rosemary leaves into the diet of the Murciano-Granadina goat: transfer of polyphenolic compounds to goats milk and the plasma of suckling goat kids. Journal of Agricultural and Food Chemistry, 58(14), 8265-8270. doi: 10.1021/jf100921z DOI: https://doi.org/10.1021/jf100921z
Kakhniashvili, D. G., Bulla, L. A., & Goodman, S. R. (2004). The human erythrocyte proteome: analysis by ion trap mass spectrometry. Molecular and Cellular Proteomics, 3(5), 501-509. doi: 10.1074/mcp.M300132-MCP200 DOI: https://doi.org/10.1074/mcp.M300132-MCP200
Katsoulos, P. D., Karatzia, M. A., Dovas, C. I., Filioussis, G., Papadopoulos, E., Kiossis, E., Arsenopoulos, K., Papadopoulos, T., Boscos, C., & Karatzias, H. (2017). Evaluation of the in-field efficacy of oregano essential oil administration on the control of neonatal diarrhea syndrome in calves. Research in Veterinary Science, 115(1), 478-483. doi: 10.1016/j.rvsc.2017.07.029 DOI: https://doi.org/10.1016/j.rvsc.2017.07.029
Kim, Y. J., Kim, E. H., & Hahm, K. B. (2012). Oxidative stress in inflammation-based gastrointestinal tract diseases: challenges and opportunities. Journal of Gastroenterology and Hepatology, 27(6), 1004-1010. doi: 10.1111/j.1440-1746.2012.07108.x DOI: https://doi.org/10.1111/j.1440-1746.2012.07108.x
Kosakowska, O., Weglarz, Z., Jabrucka, E. P., Przybyl, J. L., Krasniewska, K., Gniewosz, M., & Baczek, K. (2021). Antioxidant and antibacterial activity of essential oils and hydroethanolic extracts of greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common oregano (O. vulgare L. subsp. vulgare). Molecules, 26(4), 988. doi: 10.3390/molecules26040988 DOI: https://doi.org/10.3390/molecules26040988
LeBel, C. P., Ischiropoulos, H., & Bondy, S. C. (1992). Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chemical Ressearch in Toxicology, 5(2), 227-231. doi: 10.1021/tx00026a012 DOI: https://doi.org/10.1021/tx00026a012
Lejonklev, J., Kidmose, U., Jensen, S., Petersen, M. A., Helwing, A. L. F., Mortensen, G., Weisbjerg, M. R., & Larsen, M. K. (2016). Short communication: Effect of oregano and caraway essential oils on the production and flavor of cow milk. Journal of Dairy Science, 99(10), 7898-7903. doi: 10.3168/jds.2016-10910 DOI: https://doi.org/10.3168/jds.2016-10910
Lejonklev, J., Løkke, M. M., Larsen, M. K., Mortensen, G., Petersen, M. A., & Weisbjerg, M. R. (2013). Transfer of terpenes from essential oils into cow milk. Journal of Dairy Science, 96(7), 4235-4241. doi: 10.3168/jds.2012-6502 DOI: https://doi.org/10.3168/jds.2012-6502
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. doi: 10.1016/S0021-9258(19)52451-6 DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
Maciej, J., Schäff, C. T., Kanitz, E., Tuchscherer, A., Bruckmaier, R. M., Wolffram, S., & Hammon, H. M. (2016). Short communication: Effects of oral flavonoid supplementation on the metabolic and antioxidative status of newborn dairy calves. Journal of Dairy Science, 99(1), 805-811. doi: 10.3168/jds.2015-9906 DOI: https://doi.org/10.3168/jds.2015-9906
Martemucci, G., Costagliola, C., Mariano, M., D'andrea, L., Napolitano, P., & D'Alessandro, A. G. (2022). Free radical properties, source and targets, antioxidant consumption and health. Oxygen, 2(2), 48-78. doi: 10.3390/oxygen2020006 DOI: https://doi.org/10.3390/oxygen2020006
Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247(10), 3170-3175. doi: 10.1016/S0021-9258(19)45228-9 DOI: https://doi.org/10.1016/S0021-9258(19)45228-9
Olagaray, K. E., & Bradford, B. J. (2019). Plant flavonoids to improve productivity of ruminants – A review. Animal Feed Science and Technology, 251(1), 21-36. doi: 10.1016/j.anifeedsci.2019.02.004 DOI: https://doi.org/10.1016/j.anifeedsci.2019.02.004
Paraskevakis, N. (2015). Effects of dietary dried Greek Oregano (Origanum vulgare ssp. hirtum) supplementation on blood and milk enzymatic antioxidant indices, on milk total antioxidant capacity and on productivity in goats. Animal Feed Science and Technology, 209(1), 90-97. doi: 10.1016/j.anifeedsci. 2015.09.001 DOI: https://doi.org/10.1016/j.anifeedsci.2015.09.001
Paris, M., Stivanin, S. C. B., Klein, C. P., Vizzotto, E. F., Passos, L. T., Angelo, I. D. V., Zanela, M. B., Stone, V., Matté, C., Heisler, G., & Fischer, V. (2020). Calves fed with milk from cows receiving plant extracts improved redox status. Livestock Science, 242(1), 104272. doi: 10.1016/j.livsci.2020.104272 DOI: https://doi.org/10.1016/j.livsci.2020.104272
Pisoschi, A. M., Pop, A., Iordache, F., Stanca, L., Predoi, G., & Serban, A. I. (2021). Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry, 209(1), 112891. doi: 10.1016/j.ejmech.2020.112891 DOI: https://doi.org/10.1016/j.ejmech.2020.112891
Reznick, A. Z., & Packer, L. (1994). Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods in Enzymology, 233(1), 357-363. doi: 10.1016/s0076-6879(94)33041-7 DOI: https://doi.org/10.1016/S0076-6879(94)33041-7
Rha, C.-S., Jeong, H. W., Park, S., Lee, S., Jung, Y. S., & Kim, D.-O. (2019). Antioxidative, anti-inflammatory, and anticancer effects of purified flavonol glycosides and aglycones in green tea. Antioxidants, 8(8), 278. doi: 10.3390/antiox8080278 DOI: https://doi.org/10.3390/antiox8080278
Ritt, L. A., Orso, C., Silveira, A. K., Frazzon, J., Vargas, D. P., Wagner, R., Oliveira, F. C., Nörnberg, J. L., & Fischer, V. (2023). Oregano extract fed to pre-weaned dairy calves. Part 1: Effects on intake, digestibility, body weight, and rumen and intestinal bacteria microbiota. Livestock Science, 269(1), 105165. doi: 10.1016/j.livsci.2023.105165 DOI: https://doi.org/10.1016/j.livsci.2023.105165
Sadiq, I. Z. (2023). Free radicals and oxidative stress: signaling mechanisms, redox basis for human diseases, and cell cycle regulation. Current Molecular Medicine, 23(1), 13-35. doi: 10.2174/15665240226662112 22161637 DOI: https://doi.org/10.2174/1566524022666211222161637
Seibt, K. D., Ghaffari, M. H., Scheu, T., Koch, C., & Sauerwein, H. (2021). Characteristics of the oxidative status in dairy calves fed at different milk replacer levels and weaned at 14 weeks of age. Antioxidants, 10(2), 260. doi: 10.3390/antiox10020260 DOI: https://doi.org/10.3390/antiox10020260
Sirichaiwetchakoon, K., Lowe, G. M., & Eumkeb, G. (2020). The free radical scavenging and anti-isolated human ldl oxidation activities of Pluchea indica (L.) Less. Tea compared to green tea (Camellia sinensis). BioMed Research International, 2020(4183643), 1-12. doi: 10.1155/2020/4183643 DOI: https://doi.org/10.1155/2020/4183643
Stone, V., August, P. M., Stocher, D. P., Klein, C. P., Couto, P. R. G., Silva, Y. D., Sagini, J. P., Salomon, T. B., Benfato, M. S., & Matté, C. (2016). Food restriction during pregnancy alters brains antioxidant network in dams and their offspring. Free Radical Research, 50(5), 530-541. doi: 10.3109/10715762.2016.1152361 DOI: https://doi.org/10.3109/10715762.2016.1152361
Wendel, A. (1981). Glutathione peroxidase. Methods in Enzymology, 77(1), 325-333. doi: 10.1016/s0076-6879 (81)77046-0 DOI: https://doi.org/10.1016/S0076-6879(81)77046-0
Zhong, R., Xiao, W., Ren, G., Zhou, D., Tan, C., Tan, Z., Han, X., Tang, S., Zhou, C., & Wang, M. (2011). Dietary tea catechin inclusion changes plasma biochemical parameters, hormone concentrations and glutathione redox status in goats. Asian-Australasian Journal of Animal Sciences, 24(12), 1681-1689. doi: 10.5713/ajas.2011.11007 DOI: https://doi.org/10.5713/ajas.2011.11007
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Semina: Ciências Agrárias
![Creative Commons License](http://i.creativecommons.org/l/by-nc/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.