Nutritional and metabolic parameters in lambs fed diets containing crude glycerine
DOI:
https://doi.org/10.5433/1679-0359.2023v44n5p1715Keywords:
Agroindustry, Animal production, Diet, Glycerol, Ruminant nutrition.Abstract
The objective of this work was to evaluate the intake, apparent digestibility, nitrogen balance, ruminal and blood parameters in lambs fed diets containing of crude glycerin. Four castrated lambs of Santa Ines breed with an average weight of 25.0 kg were used. The evaluated diets contained four levels of crude glycerin (0.0, 50.0, 100.0 and 150.0 g kg DM-1). All diets were formulated to meet the nutrient requirements of growing and finishing lambs. The ingredients were: Brachiaria dyctioneura hay as roughage, ground corn grain, soybean meal, urea, mineral salt and crude glycerin. The complete diet provided to the animals was composed of 500 g kg-1 roughage and 500 g kg-1 concentrate on DM basis. A 4 x 4 Latin square experimental design was used. The highest intake (P<0.05) of dry matter (129.08 g kg BW-0.75), neutral detergent fiber (62.91 g kg BW-0.75), acid detergent fiber (41.10 g kg BW-0.75), total carbohydrate (99.92 g kg BW-0.75) and organic matter (116.89 g kg BW-0.75) was achieved with diets varying from 39.2 to 44.7 g kg DM-1 crude glycerin. Crude protein (17.84 g kg BW-0.75) and ether extract (2,70 g kg BW-0.75) intake was higher (P<0.05) with diets containing 39.0 and 77.1 g kg DM-1 of crude glycerin, respectively. Consumed and absorbed N displayed a quadratic effect, whereas retained N displayed a linear decreasing effect in function of crude glycerin levels. Ruminal concentrations of acetate, propionate, and butyrate, and blood glucose was influenced (P<0.05) by the postprandial hour vs. experimental diet interaction. Glycerin levels in the diet did not influence (P>0.05) the apparent digestibility and ruminal N-NH3, pH, ciliate protozoa and blood urea. Therefore, diets containing crude glycerin influenced dry matter intake, with the highest value being around 40 g kg DM-1. Likewise, diets containing crude glycerin influenced the N consumed and absorbed with maximum crude glycerin points of 36.9 and 28.4 g kg DM-1.
Downloads
References
Almeida, M. T. C., Ezequiel, J. M. B., Paschoaloto, J. R., Pereza, H. L., Carvalho, V. B., Castro, E. S., Fº., & Van Cleef, E. H. C. B. (2018). Effects of high concentrations of crude glycerin in diets for feedlot lambs: feeding behavior, growth performance, carcass and non-carcass traits. Animal Production Science, 58(7), 1271-1278. doi: 10.1071/AN16628 DOI: https://doi.org/10.1071/AN16628
Andrade, G. P., Carvalho, F. F. R., Batista, A. M. V., Pessoa, A. S., Costa, C. A., Cardoso, D. B., & Maciel, M. V. (2018). Evaluation of crude glycerine as a partial substitute of corn grain in growing diets for lambs. Small Ruminant Research, 165, 41-47. doi: 10.1016/j.smallrumres.2018.06.002 DOI: https://doi.org/10.1016/j.smallrumres.2018.06.002
Andrade, P. A. D., Borges, I., Guedes, L. F., Silva, N. C. D., Maciel, I. C. F., Ribeiro, G. C., Alves, L. R. N., & Silva, V. L. (2012). Concentração de ácidos graxos voláteis no líquido ruminal de ovinos alimentados com milho expandido sob estresse térmico. Revista Cientifica de Produção Animal, 14(2), 188-191. doi: 10.15528/2176-4158/rcpa.v14n2p188-191 DOI: https://doi.org/10.15528/2176-4158/rcpa.v14n2p188-191
Aschenbach, J. R., Kristensen, N. B., Donkin, S. S., Hammon, H. M., & Penner, G. B. (2010). Glu-coneogenesis in dairy cows: the secret of making sweet milk from sour dough. IUBMB Life, 62(12), 869-877. doi: 10.1002/iub.400 DOI: https://doi.org/10.1002/iub.400
Association of Official Analytical of Chemists (2016). Official methods of analytical of the association of official analytical of chemists (20nd ed.). AOAC.
Barros, M. C. C., Marques, J. A., Silva, F. F., Silva, R. R., Guimarães, G. S., Silva, L. L., & Araújo, F. L. (2015). Glicerina bruta na dieta de ovinos confinados: consumo, digestibilidade, desempenho, medidas morfométricas da carcaça e características da carne. Semina: Ciências Agrárias, 36(1), 453-466. doi: 10.433/1679-0359.2015v36n1p453 DOI: https://doi.org/10.5433/1679-0359.2015v36n1p453
Bock, B. J., Harmonb, D. L., Brand,t R. T.. Jr., & Schneider, J. S. (1991) Fat source and calcium level effects on finishing steer performance, digestion, and metabolism. Journal of Animal Science, 69(5), 2211-2224. doi:10.2527/1991.6952211x DOI: https://doi.org/10.2527/1991.6952211x
Chanjula, P., Pakdeechanuanb, P., & Wattanasit, S. (2015). Effects of feeding crude glycerin on feedlot performance and carcass characteristics in finishing goats. Small Ruminant Research, 123(1), 95-102. doi: 10.1016/j.smallrumres.2014.11.011 DOI: https://doi.org/10.1016/j.smallrumres.2014.11.011
Chung, Y. H., Rico, D. E., Martinez, C. M., Cassidy, T. W., Noirot, V., Ames, A. & Varga, G. A. (2007). Effects of Feeding Dry Glycerin to Early Postpartum Holstein Dairy Cows on Lactational Performance and Metabolic Profiles. Journal Dairy Science, 90:5682-5691. doi: 10.3168/jds.2007-0426 DOI: https://doi.org/10.3168/jds.2007-0426
Cunningham, J. G. (2004). Tratado de fisiologia veterinária. Guanabara Koogan.
D'Agosto, M., & Carneiro, M. E. (1999). Evaluation of lugol solution used for counting rumen ciliates. Revista Brasileira de Zoologia, 16(3), 725-729. doi: 10.1590/S0101-81751999000300011 DOI: https://doi.org/10.1590/S0101-81751999000300011
Dehority, B. A. (1984). Evaluation of sub-sampling and fixation procedures used for counting rumen protozoa. Wooster, Applied and Environmental Microbiology, 48(1), 182-185. doi: 10.1128/aem.48.1.182-185 DOI: https://doi.org/10.1128/aem.48.1.182-185.1984
Detmann, E., Souza, M. A., Valadares, S. C. Fº, Queiroz, A. C., Berchielli, T. T., Salivba, E. O. S., Cabral, L. S., Pina, D. S., Ladeira, M. M. & Azevedo, J. A. G. (2012). Métodos para análise de alimentos. Suprema.
Getahun, D., Alemneh, T., Akeberegn, D., Getabalew, M., & Zewdie, D. (2019). Urea metabolism and recycling in ruminants. Biomedical Journal of Scientific & Technical Research, 20(1), 14790-14796. doi: 10.26717/BJSTR.2019.20.003401 DOI: https://doi.org/10.26717/BJSTR.2019.20.003401
Hristov, A. N., Bannink, A., Crompton, L. A., Huhtanen, P., Kreuzer, M., Mcgee, M., Nozière, P., Reynolds, C. K., Bayat, A. R., Yáñez-Ruiz, D. R., Dijkstra, J., Kebreab, E., Schwarm, A., Shingfield, K. J., & Yu, Z. (2019). Nitrogen in ruminant nutrition: a review of measurement techniques. Journal of Dairy Science, 102(7), 5811-5852. doi: 10.3168/jds.2018-15829 DOI: https://doi.org/10.3168/jds.2018-15829
Kholif, A. E. (2019). Glycerol use in dairy diets: a systemic review. Animal Nutrition 5(3), 209-216. doi: 10.1016/j.aninu.2019.06.002 DOI: https://doi.org/10.1016/j.aninu.2019.06.002
Kozloski, G. V. (2011). Bioquímica dos ruminantes (3a ed.). Editora Santa Maria.
Kuo, T., Mcqueen, A., Chen, T. C., & Wang, J. C. (2015). Regulation of glucose homeostasis by glucocorticoids. Glucocorticoid Signaling. Advances in Experimental Medicine and Biology, 872, 99-126. doi: 10.1007/978-1-4939-2895-8_5 DOI: https://doi.org/10.1007/978-1-4939-2895-8_5
Monnerat, J. P. I. S. (2012). Avaliação nutricional, desempenho e qualidade da carne de bovinos corte alimentados com dietas contendo glicerina bruta. Tese de doutorado, Universidade Federal de Viçosa, Viçosa, MG, Brasil.
Nagaraja, T. G. (1997). Manipulation of ruminal fermentation. In P. N. Hobson, & C. S. Stewart (Eds.), The rumen microbial ecosystem (pp. 523-632). Springer, Dordrecht: Blackie Academic & Professional. DOI: https://doi.org/10.1007/978-94-009-1453-7_13
National Research Council (2007). Nutrient requirements of small ruminants (7nd ed.). National Academic Press.
Ogimoto, K., & Imai, S. (1981). Atlas of rumen microbiology. Japan Scientific Societies Press.
Oliveira, B. C., Caetano, G. A. O., Caetano, M. B., Jr., & Oliveira, C. B. (2017). Mecanismos reguladores de consumo em bovinos de corte. Nutritime, 14(4), 6066-6075.
Oliveira, J. S., Antoniassi, R., Freitas, S. C., & Müller, M. D. (2013). Composição química da glicerina produzida por usinas de biodiesel no Brasil e potencial de uso na alimentação animal. Ciência Rural, 43(3), 509-512. doi: 10.1590/S0103-84782013000300022 DOI: https://doi.org/10.1590/S0103-84782013000300022
Patterson, J. A., & Ricke, S. C. (2015). Effect of ethanol and methanol on growth of ruminal bacteria Selenomonas ruminantium and Butyrivibrio fibrisolvens. Journal of Environmental Science and Health 50(1), 62-67. doi: 10.1080/03601234.2015.965639 DOI: https://doi.org/10.1080/03601234.2015.965639
Patterson, T., Klopfenstein, T. J., Milton, T., & Brink, D. R. (2000). Evaluation of the 1996 beef cattle NRC model predictions of intake and gain for calves fed low or medium energy density diets. Nebraska Beef Report, 385, 26-29. https://digitalcommons.unl.edu/animalscinbcr/385
R Core Team (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org
Reece, W. O. (2006). Dukes, fisiologia dos animais domésticos (2a ed.). Editora Guanabara Koogan S. A.
Ribeiro, R. D. X., Carvalho, G. G. P., Silva, T. M. S., Costa, J. B., Bezerra, L. R., Cambuí, G. B., Barbosa, A. M., & Oliveira, R. L. (2018). Effects of crude glycerin from biodiesel on the diets of lambs: intake, digestibility, performance, feeding behavior, and serum metabolites. Journal of Animal Science, 96(5), 1952-1961. doi: 10.1093/jas/sky075
Rotondo, F., Ho-Palma, A. C., Remesar, X., Fernández-López, J. A., Romero, M. M., & Alemanv, M. (2017). Glycerol is synthesized and secreted by adipocytes to dispose of excess glucose, via glycerogenesis and increased acyl-glycerol turnover. Scientific Reports, 7, 1-14. doi: 10.1038/s41598-017-09450-4 DOI: https://doi.org/10.1038/s41598-017-09450-4
Sampaio, C. B., Detmann, E., Paulino, M. F., Valadares, S. C., Fº., Souza, M. A., Lazzarini, I., Pauliono, P. V. R., & Queiroz, A. C. (2010). Intake and digestibility in cattle fed low-quality tropical forage and supplemented with nitrogenous compounds. Tropical Animal Health and Production, 42(7), 1471-1479. doi: 10.1007/s11250-010-9581-7 DOI: https://doi.org/10.1007/s11250-010-9581-7
Silva, J. F. C. (2006). Mecanismos reguladores de consumo. In T. T. Berchielli, A. V, Pires & S. G. Oliveira (Eds.), Nutrição de ruminantes (pp. 57-77). Jaboticabal.
Silva, J. F. C., & Leão, M. I. (1979). Fundamentos de nutrição dos ruminantes. Livroceres.
Sniffen, C. J., O’Connor, J. D., Van Soest, P. J., Fox, D. G., & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, 70(11), 3562-3577. doi: 10.2527/1992.70113562x DOI: https://doi.org/10.2527/1992.70113562x
Terré, M., Nuda, A., Casado, A., & Bach, A. (2011). The use of glycerine in rations for light lamb during the fattening period. Animal Feed Science Technology, 164(3-4), 262-267. doi: 10.1016/j.anifeedsci.2010.12.008 DOI: https://doi.org/10.1016/j.anifeedsci.2010.12.008
Van Cleef, E. H. C. B., Almeida, M. T. C., Perez, H. L., Paschoaloto, J. R., Castro, E. S., Fº., & Ezequiel, J. M. B. (2018). Effects of partial or total replacement of corn cracked grain with high concentrations of crude glycerin on rumen metabolism of crossbred sheep. Small Ruminant Research, 159, 45-51. doi: 10.1016/j.smallrumres.2017.12.011 DOI: https://doi.org/10.1016/j.smallrumres.2017.12.011
Van Soest, P. J. (1994). Nutritional ecology of the ruminant (2a ed.). Cornell University Press. DOI: https://doi.org/10.7591/9781501732355
Vieira, P. F. (1980). Efeito do formaldeído na proteção de proteínas e lipídios em rações para ruminantes. Tese de Doutorado, Universidade Federal de Viçosa, Viçosa, MG, Brasil.
Welkie, D. G., Stevenson, D. M., & Weimer, P. J. (2010). Analysis of ruminal bacterial community dynamics in lactating dairy cows during the feeding cycle. Anaerobe, 16(2), 94-100. doi: 10.1016/j.anaerobe.2009. 07.002 DOI: https://doi.org/10.1016/j.anaerobe.2009.07.002
Wittwer, F. (2000). Diagnósticos dos desequilíbrios metabólicos de energia em rebanhos bovinos. In F. H. D. González, J. O. Barcellos, H. Ospina, & L. A. O. Ribeiro (Eds.), Perfil metabólico em ruminantes: seu uso em nutrição e doenças nutricionais (pp. 9-22). Porto Alegre: Gráfica da Universidade Federal do Rio Grande do Sul.
Zacaroni, O. de F., & Souto, C. N. (2019). Glicerina bruta como alimento energético para vacas de leite. Revista de Ciências Agroveterinárias, 18(3), 404-411. doi: 10.5965/223811711832019404 DOI: https://doi.org/10.5965/223811711832019404
Zeoula, L. M., Caldas Neto, S. F., Geron, L. J. V., Maeda, E. M., Prado, I. N., Dian, P. H. M., Jorge,m J. R. V., Marques, J. A. (2003). Substituição do milho pela farinha de varredura de mandioca (Manihot esculenta Crantz) em rações de ovinos: consumo, digestibilidade, balanços de nitrogênio e energia e parâmetros ruminais. Revista Brasileira de Zootecnia, 32(2), 491-502. doi: 10.1590/S1516-35982003000200030 DOI: https://doi.org/10.1590/S1516-35982003000200030
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Semina: Ciências Agrárias

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.