Genetic structure and inbreeding in Romney Marsh sheep in Brazil

Authors

  • Jean Pierre Martins Machado Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas https://orcid.org/0000-0003-0302-8482
  • Otoniel Geter Lauz Ferreira Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas https://orcid.org/0000-0003-0302-8482
  • Nuno Carolino Instituto Nacional de Investigação Agrária e Veterinária, Escola Universitária Vasco da Gama
  • Ricardo Zambarda Vaz Universidade Federal de Santa Maria https://orcid.org/0000-0003-4505-1277

DOI:

https://doi.org/10.5433/1679-0359.2023v44n1p437

Keywords:

Ancestors, Average relatedness, Founders, Inbreeding, Pedigree information.

Abstract

According to the last livestock census, Brazil has 17,976,367 head of sheep. Approximately 23.69% of this herd is located in the south region, where wool or wool and meat-producing breeds are predominately farmed. Inbreeding, or consanguinity, is defined as the mating of related individuals, which tends to occur when herds are small or originate from few parents. This study proposes to investigate the genetic structure and diversity of the Romney Marsh sheep herd in Brazil. The pedigree data used were obtained from the Brazilian Association of Sheep Breeders (ARCO), which keeps the sheep register database. For a more complete analysis, data from the Purebred Register Books were used. The population herein referred to as “total” comprised 22,833 individuals, whereas the population termed “reference” consisted of 17,053 records. Individual and average inbreeding coefficients, as well as overall frequencies, were calculated using SAS software. Demographic indicators were determined using ENDOG software. The average inbreeding coefficient found was 2.90% in the total population and 3.55% in the reference population. The minimum inbreeding value found in the studied population was 0.01% and the maximum was 43.47%. Inbred animals in the complete reference population were 10.31%. In 2018, inbred animals represented 82.55% of the registered population. The average generation interval was 4.0488 years. Due to the intensive use of few breeding lines and the high degree of genetic uniformity in the population, the Romney Marsh breed has narrow pedigree bottlenecks. The current population of the Romney Marsh breed has only two genetic origins, warranting the introduction of new genes to avoid genetic erosion and severe losses due to inbreeding.

Downloads

Download data is not yet available.

Author Biographies

Jean Pierre Martins Machado, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas

Doctoral Student at Programa de Pós-Graduação em Zootecnia, PPGZ, Faculdade de Agronomia Eliseu Maciel, FAEM, Universidade Federal de Pelotas, UFPEL, RS, Brazil.

Otoniel Geter Lauz Ferreira, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas

Doctor, Teacher at Departamento de Zootecnia, FAEM, UFPEL, RS, Brazil.

Nuno Carolino, Instituto Nacional de Investigação Agrária e Veterinária, Escola Universitária Vasco da Gama

Doctor, Researcher at Instituto Nacional de Investigação Agrária e Veterinária, Fonte Boa; Centro de Investigação Interdisciplinar em Sanidade Animal, Lisboa; Teacher at Escola Universitária Vasco da Gama, Coimbra, Portugal.

Ricardo Zambarda Vaz, Universidade Federal de Santa Maria

Doctor, Teacher at Departamento de Zootecnia, Universidade Federal de Santa Maria, UFSM, Campus Palmeira das Missões, RS, Brazil.

References

Carolino, N., & Gama, L. T. (2002). Manual de utilização de software para a gestão de recursos genéticos animais. Estação Zootécnica Nacional, Instituto Nacional de Investigação Agrária e Pescas.

Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4nd ed.). Longman Group Ltd.

Ferreira, O. G. L., & Gonçalves, M. S. (2016). Ovinocultura. Educat.

Gama, L. T. (2002). Melhoramento genético animal. Escolar Editora.

Gutierrez, J. P., & Goyache, F. (2005). A note on ENDOG: a computer program for analysing pedigree information. Journal of Animal Breeding and Genetics, 122(3), 172-176. doi: 10.1111/j.1439-0388.2005.00512.x DOI: https://doi.org/10.1111/j.1439-0388.2005.00512.x

Instituto Brasileiro de Geografia e Estatística (2022). Efetivo dos rebanhos. IBGE. ttps://sidra.ibge.gov.br/home/pmc/brasil

Illa, S. K., Gollamoori, G., & Nath, S. (2019). Evaluation of selection program by assessing the genetic diversity and inbreeding effects on Nellore sheep growth through pedigree analysis. Animal Bioscience, 33(9), 1369-1377. doi: 10.5713/ajas.18.0553 DOI: https://doi.org/10.5713/ajas.18.0553

Machado, J. P. M. (2019). Endogamia e caracterização da estrutura populacional da raça bovina Shorthorn e ovina Romney Marsh. Dissertação de mestrado, Universidade de Pelotas, Programa de Pós-Graduação em Zootecnia, Pelotas, RS, Brasil. https://wp.ufpel.edu.br/ppgz/files/2021/01/Endogamia-e-caracterizacao-da-estrutura-populacional-da-raca-bovina-Shorthorn-e-ovina-Romney-Marsh.pdf

Machado, J. P. M., Carolino, N., & Ferreira, O. G. L. (2020). Genetic structure and inbreeding based on the 112 years of shorthorn records in Brazil. Livestock Science, 242(1), 104300. doi: 10.1016/j.livsci.2020.104300 DOI: https://doi.org/10.1016/j.livsci.2020.104300

Mchugh, N., Berry, D., Mcparland, S., Wall, E., & Pabiou, T. (2022). Irish sheep breeding - Current status and future plans. https://www.sheep.ie/wp/wp-content/uploads/2013/12/Irish-sheep-breeding-Current-status-and-future-plans.pdf

McManus, C., Facó, O., Shiotsuki, L., Rolo, J. L. J. de P., & Peripolli, V. (2019). Pedigree analysis of Morada Nova hair sheep. Small Ruminant Research, 170(1), 37-42. doi: 10.1016/j.smallrumres.2018.11.012 DOI: https://doi.org/10.1016/j.smallrumres.2018.11.012

Olori, V. E., & Wickman, B. (2004). Strategies for the conservation of the indigenous Kerry Cattle of Ireland. Animal Genetic Resources Information, 35(1), 37-47. doi: 10.1017/S1014233900001796 DOI: https://doi.org/10.1017/S1014233900001796

Osório, J. C. S., Osório, M. T. M., Sousa, O. R. C., Ferreira, O. G. L., Silveira, F. A., Farias, P. P., Costa, P. T., & Nunes, L. P. (2020). Características da carcaça, componentes não-carcaça e dos cortes comerciais de cordeiros Romney Marsh abatidos em diferentes idades. Revista Científica Rural, 22(2), 295-309. doi: 10.30945/rcr-v22i2.2784 DOI: https://doi.org/10.30945/rcr-v22i2.2784

Prieur, V., Clarke, S. M., Brito, L. F., Mcewan, J. C., Lee, M. A., Brauning, R., Dodds, K. G., & Auvray, B. (2017). Estimation of linkage disequilibrium and effective population size in New Zealand sheep using three different methods to create genetic maps. BMC Genetics, 18(68), 1-19. doi: 10.1186/s12863-017-0534-2 DOI: https://doi.org/10.1186/s12863-017-0534-2

Rashidi, A., Almasi, M., & Mokhtari, M. S. (2018). Inbreeding effects on lamb pre-weaning growth traits and survival in three Iranian sheep breeds. Journal of Livestock Science and Technologies, 6(2), 47-56. doi: 10.22103/jlst.2018.10848.1208

Rego, A. de A., Neto, Sarmento, J. L. R., Santos, N. P. da S., Campelo, J. E. G., Sena, L. S., Biagiotti, D., & Santos, G. V. dos. (2018). Population genetic structure of Santa Inês sheep in Brazil. Tropical Animal Health and Production, 50(1), 503-508. doi: 10.1007/s11250-017-1459-5 DOI: https://doi.org/10.1007/s11250-017-1459-5

Rochus, C. M., & Johansson, A. M. (2017). Estimation of genetic diversity in Gute sheep: pedigree and microsatellite analyses of an ancient Swedish breed. Hereditas, 154(4), 2-7. doi: 10.1186/s41065-017-0026-4 DOI: https://doi.org/10.1186/s41065-017-0026-4

Rodriguez-Ramillo, S. T., Elsen, J. M., & Legarra, A. (2019). Inbreeding and effective population size in French dairy sheep: comparasion between genomic and pedigree estimates. Journal of Dairy Science, 102(5), 4227-4237. doi: 10.3168/jds.2018-15405 DOI: https://doi.org/10.3168/jds.2018-15405

Statistical Analysis System Institute (2009). Copyright © 2009. SAS Institute Inc.

Tino, C. R. S., Cavani, L., Fonseca, R., & Silva, K. M. (2020). Análise da estrutura populacional de ovinos deslanados do núcleo de conservação. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 72(1), 560-564. doi: 10.1590/1678-4162-10502 DOI: https://doi.org/10.1590/1678-4162-10502

Vatankhah, M., Sigdel, A., & Abdollahi-Arpanahi, R. (2019). Population structure of Lori-Bakhtiari sheep in Iran by pedigree analysis. Small Ruminant Research, 174(1), 148-155. doi: 10.1016/j.smallrumres.2019.02.019 DOI: https://doi.org/10.1016/j.smallrumres.2019.02.019

Venkataramanan, R., Subramanian, A., Sivaselvam, S. N., Sivakumar, T., Sreekumar, C., Aniljumar, R., & Iyue, M. (2013). Pedigree analysis of the Nilagiri sheep of South India. Animal Genetics Resources Information, 53(1), 11-18. doi: 10.1017/S2078633613000301 DOI: https://doi.org/10.1017/S2078633613000301

Vostry, L., Milersky, M., Schmidova, J., & Vostra-Vydrova, H. (2018). Genetic diversity and effect of inbreeding on litter size of the Romanov sheep. Small Ruminant Research, 168(1), 25-31. doi: 10.1016/j.smallrumres.2018.09.004 DOI: https://doi.org/10.1016/j.smallrumres.2018.09.004

Wright, S. (1923). Mendelian Analysis of the pure breeds of livestock: I. The measurement of inbreeding and relationship. Journal of Heredity, 14(8), 339-348. doi: 10.1093/oxfordjournals.jhered.a102354 DOI: https://doi.org/10.1093/oxfordjournals.jhered.a102354

Downloads

Published

2023-03-31

How to Cite

Machado, J. P. M., Ferreira, O. G. L., Carolino, N., & Vaz, R. Z. (2023). Genetic structure and inbreeding in Romney Marsh sheep in Brazil. Semina: Ciências Agrárias, 44(1), 437–450. https://doi.org/10.5433/1679-0359.2023v44n1p437

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

You may also start an advanced similarity search for this article.