In vitro control of Botrytis cinerea and Penicillium italicum by antagonistic yeasts

Authors

DOI:

https://doi.org/10.5433/1679-0359.2020v41n5supl1p2411

Keywords:

Antagonism, Biological control, Blue mold, Gray mold, Volatile compounds.

Abstract

Gray mold in grapes (caused by Botrytis cinerea) and blue mold in citrus (caused by Penicillium italicum) are post-harvest diseases that cause major losses in these crops. The control of these diseases is based on the use of synthetic chemical fungicides. The increase in regulatory policies and demand to reduce the application of pesticides, due to harmful effects on the environment and humans, have led to the search for more ecofriendly alternatives, such as biological control agents. Thus, the present work aims to verify the antagonistic potential of four yeast strains, Pichia caribbica (CCMA 0759), Hanseniaspora opuntiae (CCMA 0760), Pichia manshurica (CCMA 0762), and Lachancea thermotolerans (CCMA 0763), against of B cinerea and P. italicum. To assess the antagonism of volatile compounds, Petri plates with two divisions containing potato-dextrose-agar (PDA) were used by placing a fungal mycelial disc and yeast suspension (3.0 × 106 cells mL-1) on opposite sides of the plate. The colony diameter and mycelial growth rate index of the fungi were evaluated via comparisons with the control plate without yeast. For the evaluation of the antagonism of diffusible substances in the medium, yeasts were striated 3 cm from the center of the plates containing PDA. After 48 h, a mycelial disc of each phytopathogen was placed in the center of the plates. The colony growth, inhibition halo, and mycelial growth rate index were evaluated via comparisons with the control plate. All yeast strains showed an antagonistic effect on the mycelial growth of B. cinerea in both tests. In the volatile compounds test, H. opuntiae, L. thermotolerans, P. caribbica, and P. manshurica inhibited mycelial growth by approximately 82%, 75%, 72%, and 50%, respectively. In the antagonism test of the diffusible substances in the medium, P. caribbica and P. manshurica inhibited mycelial growth by 58% and 33%, respectively. However, these yeast strains did not show an antagonistic effect against P. italicum. Thus, all isolates demonstrated potential to be tested as biocontrol agents of gray mold in post-harvest grape fruits.

Downloads

Download data is not yet available.

Author Biographies

Renata Mori Thomé, Universidade Estadual de Londrina

Discente do Curso de Doutorado do Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, UEL, Londrina, PR, Brasil.

Luiz Vitor Barbosa de Oliveira, Universidade Estadual de Londrina

Discente do Curso de Graduação em Agronomia, UEL, Londrina, PR, Brasil.

Ciro Hideki Sumida, Universidade Estadual de Londrina

Prof. Dr., Departamento de Agronomia, Universidade Estadual de Londrina, UEL, PR, Brasil.

Maria Isabel Balbi-Peña, Universidade Estadual de Londrina

Profa Dra, Departamento de Agronomia, Programa de Pós-Graduação em Agronomia, UEL, Londrina, PR, Brasil.

References

Amorim, L., Spósito, M. B., & Kuniyuki, H. (2016). Doenças da videira. In: L., Amorim, J. A. M. Rezende, A. Bergamim Fo, & L. E. A. Camargo (Eds.), Manual de fitopatologia (pp. 745-758). São Paulo: Editora Ceres, BR.

Bassanezi, R. B., Silva, G. J., Feichtenberger, E., Belasque, J., Jr., Behlau, F., & Wulff, N. A. (2016). Doenças dos citros. In: L., Amorim, J. A. M. Rezende, A. Bergamim Fo, & L. E. A. Camargo (Eds.), Manual de Fitopatologia (pp. 271-306). São Paulo: Editora Ceres, BR.

Campos Nogueira, E. M. de, Ferrari, J. T., & Töfoli, J. G. (2017). Doenças fúngicas da videira: sintomas e manejo. (Documento Técnico, 2017). São Paulo, SP: Governo do Estado de São Paulo, Secretaria de Agricultura e Abastecimento Agência Paulista de Tecnologia dos Agronegócios, Instituto Biológico.

Coelho, A. R., Celli, M. G., Ono, E. Y. S., Wosiacki, G., Hoffmann, F. L., Pagnocca, F. C., & Hirooka, E. Y. (2007). Penicillium expansum versus antagonist yeasts and patulin degradation in vitro. Brazilian Archives of Biology and Technology, 50(4), 725-733. doi: 10.1590/S1516-89132007000400019

Ferreira-Saab, M., Formey, D., Torres, M., Aragón, W., Padilla, E. A., Tromas, A.,…Serrano, M. (2018). Compounds released by the biocontrol yeast Hanseniaspora opuntiae protect plants against Corynespora cassiicola and Botrytis cinerea. Frontiers in Microbiology, 9(1596), 1596-1608. doi: 10.3389/fmicb.2018.01596

Fisher, M. C., Hawkins, N. J., Sanglard, D., & Gurr, S. J. (2018). Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 360(6390), 739-742. doi: 10.1126/ science.aap7999

Hatoum, R., Labrie, S., & Fliss, I. (2012). Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Frontiers in Microbiology, 3(421), 1-12. doi: 10.3389/fmicb.2012. 00421

Heling, A. L., Kuhn, O. J., Stangarlin, J. R., Henkemeier, N. P., Coltro-Roncato, S., & Gonçalves, E. D. V. (2017). Controle biológico de antracnose em pós‐colheita de banana “Maçã” com Saccharomyces spp. Summa Phytopathologica, 43(1), 49-51. doi: 10.1590/0100-5405/2105

Kupper, K. C., Cervantes, A. L. L., Klein, M. N., & Silva, A. C. (2013). Avaliação de microrganismos antagônicos, Saccharomyces cerevisiae e Bacillus subtilis para o controle de Penicillium digitatum. Revista Brasileira de Fruticultura, 35(2), 425-436. doi: 10.1590/S0100- 29452013000200011

Lahlali, R., Hamadi, Y., El Guilli, M., & Haissam Kikakli, M. (2011). Efficacy assessment of Pichia guilliermondii strain Z1, a new biocontrol agent, against citrus blue mould in Morocco under the influence of temperature and relative humidity. Biological Control, 56(3), 217-224. doi: 10.1016/ j.biocontrol.2010.12.001

Lima, J. R., Gonçalves, L. R. B., Brandão, L. R., Rosa, C. A., & Viana, F. M. P. (2013). Isolation, identification, and activity in vitro of killer yeasts against Colletotrichum gloeosporioides isolated from tropical fruits. Journal of Basic Microbiology, 53(7), 590-599. doi: 10.1002/jobm.201200049

Lozowicka, B., Hrynki, I., Kaczynski, P., Jankowska, M., & Rutkowska, E. (2016). Long-term investigation and health risk assessment of multi-class fungicide residues in fruits. Polish Journal of Environmental Studies, 25(2), 681-697. doi: 10.15244/pjoes/61111

Martínez-Hidalgo, P., García, J. M., & Pozo, M. J. (2015). Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Frontiers in Microbiology, 2(6), 922. doi: 10.3389/fmicb.2015.00922

Moura, V. S., Moretto, R. K., Machado, B. I., & Kupper, K. C. (2019). Alternativas de controle de doenças de pós-colheita em citros. Citrus Research & Technology, 40(1441), 1-11. doi: 10.4322/crt.17819

Oliveira, A. V., Rabelo, P. R., Portes, C. S., & Coelho, A. R. (2011). Biocontrole in vitro de Botrytis cinerea por leveduras killer visando aplicação em morangos pós-colheita. Revista Ciências Exatas e Naturais, 13(3), 353-364. Retrieved from https://revistas.unicentro.br/index.php/RECEN/article/view/1344/1552

Parafati, L., Vitale, A., Restuccia, C., & Cirvilleri, G. (2015). Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiology, 47(10), 85-92. doi: 10.1016/j.fm.2014.11.013

Piati, A., Schneider, C. F., & Nozaki, M. H. (2011). Efeito in vitro do óleo essencial de Eucalyptus globulus sobre o crescimento e desenvolvimento de Penicillium sp. Semina: Ciências Agrárias, 32(3), 1033-1040. doi: 10.5433/1679-0359.2011v32n3p1033

Reglinski, T., Elmer, P. A. G., Taylor, J. T., Wood, P. N., & Hoyte, S. M. (2010). Inhibition of Botrytis cinerea growth and suppression of botrytis bunch rot in grapes using chitosan. Plant Pathology, 59(5), 882-890. doi: 10.1111/j.1365-3059.2010.02312.x

Rezende, D. C., Fialho, M. B., Brand, S. C., Blumer, S., & Pascholati, S. F. (2015). Antimicrobial activity of volatile organic compounds and their effect on lipid peroxidation and electrolyte loss in Colletotrichum gloeosporioides and Colletotrichum acutatum mycelia. African Journal of Microbiology Research, 9(23), 1527-1535, 2015. doi: 10.5897/AJMR2015.7425

Ruiz-Moyano, S., Martín, A., Villalobos, M. C., Calle, A., Serradilla, M. J., Córdoba, M. G., & Hernández, A. (2016). Yeasts isolated from figs (Ficus carica L.) as biocontrol agents of postharvest fruit diseases. Food Microbiology, 57(7), 45-53. doi: 10.1016/j.fm.2016.01.003

Santos, D. A., Oliveira, D. F., Tonial, I. B., Yamaguchi, M. M., & Coelho, A. R. (2016). Controle biológico em morangos in natura. In: A. F. Oliveira, & L. J. Storto (Eds.), Tópicos em ciência e tecnologia de alimentos: resultados de pesquisas acadêmicas (pp. 175-200). São Paulo: Blucher. Retrieved from https://openaccess.blucher.com.br/article-details/controle-biologico-em-morangos-in-natura-19922

Syed Ab Rahman, S. F., Singh, E., Pieterse, C. M. J., & Schenk, P. M. (2018). Emerging microbial biocontrol strategies for plant pathogens. Plant Science, 267(11), 102-111. doi: 10.1016/j.plantsci. 2017.11.012

Downloads

Published

2020-08-07

How to Cite

Thomé, R. M., Oliveira, L. V. B. de, Sumida, C. H., & Balbi-Peña, M. I. (2020). In vitro control of Botrytis cinerea and Penicillium italicum by antagonistic yeasts. Semina: Ciências Agrárias, 41(5supl1), 2411–2418. https://doi.org/10.5433/1679-0359.2020v41n5supl1p2411

Issue

Section

Communication

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.