Como é modulado o desenvolvimento frutífero de Coffea canephora pelo abastecimento de água? Uma análise das curvas de crescimento para sistemas irrigados e não irrigado

Autores

DOI:

https://doi.org/10.5433/1679-0359.2022v43n5p2359

Palavras-chave:

Crescimento, Deficit hídrico, Ramos plagiotrópicos, biomassa microbiana

Resumo

Os cafeeiros conilon podem apresentar padrões divergentes para o acúmulo de matéria seca e desenvolvimento de frutos, sejam eles resultantes de fatores genéticos ou ambientais. O objetivo deste estudo foi quantificar o acúmulo de matéria seca em órgãos aéreos e a produtividade do café conilon cultivado em condições de irrigação ou de sequeiro. O experimento foi realizado no Estado da Bahia (Brasil), localizado no Atlântico, ao longo de dois anos de avaliação. Foi utilizado o delineamento experimental inteiramente casualizado, em parcelas subdivididas, com 14 repetições. Os tratamentos consistiram de dois tipos de cultivo, sendo estes, irrigado e de sequeiro, nas parcelas e o tempo ao longo do ciclo reprodutivo nas sub-parcelas. O crescimento reprodutivo foi avaliado a partir de dez dias após a primeira floração e, em seguida, a cada 28 dias, até a completa maturação dos frutos. O acúmulo de matéria seca nos frutos do café conilon pode ser bem explicado usando modelos sigmoidais; enquanto o número de ramos e o acúmulo de biomassa nas folhas presentes se ajustam a modelos lineares, independentemente do cultivo irrigado ou de sequeiro. A magnitude e intensidade do acúmulo de biomassa, no entanto, é influenciada pelo uso da irrigação, o que provoca ganhos no acúmulo de biomassa por fruto.

Downloads

Não há dados estatísticos.

Biografia do Autor

André Monzoli Covre, niversidade Federal do Espírito Santo

Mestre em Agricultura Tropical, Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, UFES, São Mateus, ES, Brasil.

Marcos Góes Oliveira, Universidade Federal do Espírito Santo

Pós-Doc, Dr. em Agricultura Tropical, Departamento de Ciências Agrárias e Biológicas, UFES, São Mateus, ES, Brasil.

Lima Deleon Martins, Universidade Federal do Espírito Santo

Pós-Doc, Dr. em Produção Vegetal, Departamento de Ciências Agrárias e Biológicas, UFES, Vitória, ES, Brasil.

Robson Bonomo, Universidade Federal do Espírito Santo

Prof. Dr., Departamento de Ciências Agrárias e Biológicas, UFES, São Mateus, ES, Brasil.

Wagner Nunes Rodrigues, Universidade Federal do Espírito Santo

Pós-Doc, Dr., Departamento de Ciências Agrárias e Biológicas, UFES, Alegre, ES, Brasil.

Marcelo Antônio Tomaz, Universidade Federal do Espírito Santo

Prof. Dr., Departamento de Ciências Agrárias e Biológicas, UFES, Alegre, ES, Brasil.

Fábio Luiz Partelli, Universidade Federal do Espírito Santo

Prof. Dr., Departamento de Ciências Agrárias e Biológicas, UFES, São Mateus, ES, Brasil.

Referências

Allen, R. G., Pereira, L. S., Raes, D., & Smuth, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. (Paper, 56). FAO, Irrigation and Drainage. http://www.fao.org/3/X0490E/ X0490E00.htm

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. doi: 10.1127/0941-2948/2013/ 0507 DOI: https://doi.org/10.1127/0941-2948/2013/0507

Bonomo, D. Z., Bonomo, R., Partelli, F. L., Souza, J. M., & Magiero, M. (2013). Conilon coffee answers to different irrigation, Revista Brasileira de Agricultura Irrigada, 7(2), 157-169. doi:10.15809/irriga.2020 v25n4p704-712 DOI: https://doi.org/10.7127/rbai.v7n200008

Bragança, S. M., Carvalho, C. H. S., Fonseca, A. F. A., & Ferrão, R. G. (2001). Clonal varieties of Conilon coffee for the Espírito Santo State, Brazil. Pesquisa Agropecuária Brasileira, 36(5), 765-770. doi: 10. 1590/S0100-204X2001000500006 DOI: https://doi.org/10.1590/S0100-204X2001000500006

Bragança, S. M., Martinez, H. E. P., Leite, H. G., Santos, L. P., Lani, J. A., Sediyama, C. S., & Alvarez, V. H. (2010). Dry matter accumulation by Conilon coffee. Revista Ceres, 57(1), 48-52. doi: 10.1590/S0034-737X2010000100009 DOI: https://doi.org/10.1590/S0034-737X2010000100009

Covre, A., Partelli, F., Bonomo, R., & Gontijo, I. (2018). Micronutrients in the fruits and leaves of irrigated and non-irrigated coffee plants. Journal of Plant Nutrition, 41(9), 1119-1129. doi: 10.1080/01904167. 2018.1431665 DOI: https://doi.org/10.1080/01904167.2018.1431665

Covre, A. M., Partelli, F. L., Bonomo, R., Braun, H., & Ronchi, C. P. (2016). Vegetative growth of Conilon coffee plants under two water conditions in the Atlantic region of Bahia, Brazil. Acta Scientiarum Agronomy, 38(4), 535-545. doi: 10.4025/actasciagron.v38i4.30627 DOI: https://doi.org/10.4025/actasciagron.v38i4.30627

Cunha, A. R., & Volpe, C. A. (2011). Growth curves of coffee fruits Obatã IAC 1669-20 in different alignments planting. Semina: Ciências Agrárias, 32(1), 49-62. doi: 10.5433/1679-0359.2011v32n1p49 DOI: https://doi.org/10.5433/1679-0359.2011v32n1p49

Dalcomo, J. M., Vieira, H. D., Ferreira, A., Lima, W. L., Ferrão, R. G., Fonseca, A. F. A., Ferrão, M. A. G., & Partelli, F. L. (2015). Evaluation of genetic divergence among clones of conilon coffee after scheduled cycle pruning. Genetics and Molecular Research, 14(4), 15417-15426. doi: 10.4238/2015 DOI: https://doi.org/10.4238/2015.November.30.19

DaMatta, F. M., & Ramalho, J. D. C. (2006). Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology, 18(1), 55-81. doi: 10.1590/S1677-042 02006000100006 DOI: https://doi.org/10.1590/S1677-04202006000100006

DaMatta, F. M., Rahn, E., Läderach, P., Ghini, R., & Ramalho, J. C. (2019). Why could the coffee crop endure change and global warming to a greater extent than previously estimated? Climate Change, 152(1), 167-178. doi: 10.1007/s10584-018-2346-4 DOI: https://doi.org/10.1007/s10584-018-2346-4

DaMatta, F. M. (2004). Exploring drought tolerance in coffee: a physiological approach with some insights for plant breeding. Brazilian Journal of Plant Physiology, 16(1), 1-6. doi: 10.1590/S1677-042020040001 00001 DOI: https://doi.org/10.1590/S1677-04202004000100001

Davis, A. P., Gole, T. W., Baena, S., & Moat, J. (2012). The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. Plos One, 7(1), 1-13. doi: 10. 1371/journal.pone.0047981 DOI: https://doi.org/10.1371/journal.pone.0047981

Davis, A. P., Tosh, J., Ruch, N., & Fay, M. F. (2011). Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data implications for the size, morphology, distribution and evolutionary history of Coffea. Botanical Journal of the Linnean Society, 167(4), 357-377. doi: 10.1111/ j.1095-8339.2011.01177.x DOI: https://doi.org/10.1111/j.1095-8339.2011.01177.x

Dongliang, Q., Tiantian, H., & Tingting, L. (2020). Biomass accumulation and distribution, yield formation and water use efficiency responses of maize (Zea mays L.) to nitrogen supply methods under partial root-zone irrigation. Agricultural Water Management, 230(1), 105981. doi: 10.1016/j.agwat.2019.105981 DOI: https://doi.org/10.1016/j.agwat.2019.105981

Dubberstein, D., Partelli, F. L., Dias, J. R. M., & Espindola, M. C. (2016). Concentration and accumulation of macronutrients in leaf of coffee berries in the Amazon, Brazil. Australian Journal of Crop Science, 10(5), 701-710. doi: 10.4025/actasciagron.v41i1.42685 DOI: https://doi.org/10.21475/ajcs.2016.10.05.p7424

Dubberstein, D., Partelli, F. L., Espindula, M. C., & Dias, J. R. M. (2019). Concentration and accumulation of micronutrients in robust coffee. Acta Scientiarum. Agronomy, 41(1), e42685. doi: 10.4025/actasciagron. v41i1.42685 DOI: https://doi.org/10.4025/actasciagron.v41i1.42685

Esther, A., & Adomako, B. (2010). Genetic and environmental correlations between bean yield and agronomic traits in Coffea canephora. Journal of Plant Breeding and Crop Science, 2(9), 64-72. doi: 10.5897/ JPBCS.9000057

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185-212. doi: 10.1051/ agro:2008021 DOI: https://doi.org/10.1051/agro:2008021

Finger, F. L., Santos, V. R., Barbosa, J. G., & Barros, R. S. (2006). Influence of temperature on respiration, ethylene production and longevity of Consolida ajacis inflorescences. Bragantia, 65(3), 363-368. doi: 10. 1590/S0006-87052006000300001 DOI: https://doi.org/10.1590/S0006-87052006000300001

International Coffee Organization (2022). Global coffee trade. ICO. http://www.ico.org/tradestatistics.asp

Laviola, B. G., Martinez, H. E. P., Salomão, L. C. C., Cruz, C. D., & Mendonça, S. M. (2007). Nutrient accumulation in coffee fruits at four plantations altitude: calcium, magnesium and sulfur. Revista Brasileira de Ciência do Solo, 31(6), 1451-1462. doi: 10.1590/S0100-06832007000600022 DOI: https://doi.org/10.1590/S0100-06832007000600022

Laviola, B. G., Martinez, H. E. P., Salomão, L. C. C., Cruz, C. D., Mendonça, S. M., & Rosado, L. (2008). Accumulation in fruits and variation in the contents in leave of NPK in coffee plant cultivated in four altitudes. Bioscience Journal, 24(1), 19-31. doi: 10.9755/ejfa.2016-04-341 DOI: https://doi.org/10.9755/ejfa.2016-04-341

Leroy, T., Bellis, F., Legnate, H., Musoli, P., Kalonji, A., Solórzano, R. G. L., & Cubry, P. (2014). Developing core collections to optimize the management and the exploitation of diversity of the coffee Coffea canephora. Genetica, 142(3), 185-199. doi: 10.1007/s10709-014-9766-5 DOI: https://doi.org/10.1007/s10709-014-9766-5

Magiero, M., Bonomo, R., Partelli, F., & Souza, G. (2017). Vegetative growth in Conilon coffee under fertigation with different instalments and doses of nitrogen and potassium. Revista Agro@mbiente, 11(1), 31-39. DOI: https://doi.org/10.18227/1982-8470ragro.v11i1.3336

Malik, M. A., Khan, K. S., Marschner, P., & Fayyaz-ul-Hassan (2013). Microbial biomass, nutrient availability and nutrient uptake by wheat in two soils with organic amendments. Journal of Soil Science and Plant Nutrition, 13(4), 955-966. doi: 10.4067/S0718-95162013005000075 DOI: https://doi.org/10.4067/S0718-95162013005000075

Marré, W. B., Partelli, F. L., Espindula, M. C., Dias, J. R. M., Gontijo, I., & Vieira, H. D. (2015). Micronutrient accumulation in Conilon coffee berries with different maturation cycles. Revista Brasileira de Ciência do Solo, 39(5), 1456-1462. doi: 10.1590/01000683rbcs20140649 DOI: https://doi.org/10.1590/01000683rbcs20140649

Martins, C. M., Reis, E. F., Busato, C., & Pezzopane, J. E. M. (2006). Growth initial conilon coffee under water deficit in soil. Engenharia na Agricultura, 141(1), 193-201. doi: 10.25186/cs.v11i1.958

Martins, L. D., Rodrigues, W. N., Machado, L. S., Brinate, S. V. B., Colodetti, T. V., Ferreira, D. S., Côgo, A. D., Apostólico, M. A., Teodoro, P. E., Tomaz, M. A., Amaral, J. F. T., Partelli, F. L., & Ramalho, J. C. (2016). Genotypes of conilon coffee can be simultaneously clustered for efficiencies of absorption and utilization of N, P and K. African Journal of Agricultural Research, 11(38), 3633-3642. doi: 10.5897/ AJAR2016.11418 DOI: https://doi.org/10.5897/AJAR2016.11418

Nsumpi, N. A., Belay, Z. A., & Caleb, O. J. (2020). Good intentions, bad outcomes: Impact of mixed-fruit loading on banana fruit protein expression, physiological responses and quality. Food Packaging and Shelf Life, 265(1), 100594. doi: 10.1016/j.fpsl.2020.100594 DOI: https://doi.org/10.1016/j.fpsl.2020.100594

Partelli, F. L., Espindola, M. C., Marré, W. B., & Vieira, D. V. (2014). Dry matter and macronutrient accumulation in fruits of Conilon coffee with different ripening cycles. Revista Brasileira de Ciência do Solo, 38(1), 214-222. doi: 10.1590/S0100-06832014000100021 DOI: https://doi.org/10.1590/S0100-06832014000100021

Partelli, F. L., Marré, W. B., Falqueto, A. R., Vieira, H. D., & Cavatti, P. C. (2013). Seasonal vegetative growth in genotypes of Coffea canephora, as related to climatic factors. Journal of Agricultural Science, 5(8), 108-116. doi: 10.5539/jas.v5n8p108 DOI: https://doi.org/10.5539/jas.v5n8p108

Petek, M. R., Sera, T., & Fonseca, I. C. B. (2009). Climatic requirements for fruit development and ripening of Coffea arabica cultivars. Bragantia, 68(1), 169-181. doi: 10.1590/S0006-87052009000100018 DOI: https://doi.org/10.1590/S0006-87052009000100018

Prezotti, L. C., & Bragança, S. M. (2013). Accumulation of dry mass, N, P and K in different genetic sources of conilon coffee. Coffee Science, 8(3), 284-294. doi: 10.25186/cs.v8i3.435

Rao, N. K. S. (2016). Onion. In N. Rao, K. Shivashankara, & R. Laxman (Eds.), Abiotic stress physiology of horticultural crops. New Delhi. DOI: https://doi.org/10.1007/978-81-322-2725-0

Rodrigues, W. P., Martins, M. Q., Fortunato, A. S., Rodrigues, A. P., Semedo, J. N., Simões-Costa, M. C., Pais, I. P., Leitão, A. E., Colwell, F., Goulao, L., Máguas, C., Maia, R., Partelli, F. L., Campostrini, E., Scotti-Campos, P., Ribeiro-Barros, A. I., Lidon, F. C., DaMatta, F. M., & Ramalho, J. C. (2016). Long-term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species. Global Change Biology, 22(1), 415-431. doi: 10.1111/gcb.13088 DOI: https://doi.org/10.1111/gcb.13088

Sakai, E., Barbosa, E. A. A., Silveira, J. M. C., & Pires, R. C. M. (2015). Coffee productivity and root systems in cultivation schemes with different population arrangements and with and without drip irrigation. Agricultural Water Management, 148(1), 16-23. doi: 10.1016/j.agwat.2014.08.020 DOI: https://doi.org/10.1016/j.agwat.2014.08.020

Silva, F. A. S. (2015). ASSISTAT - Statistical assistance. versão 7.7 beta. Universidade Federal de Campina Grande. http://www.assistat.com/indexi.html

Silva, V. A., Antunes, W. C., Guimarães, B. L. S., Paiva, R. M. C., Silva, V. F., Ferrão, M. A. G., DaMatta, F. M., & Loureiro, M. E. (2010). Physiological response of Conilon coffee clone sensitive to drought grafted onto tolerant rootstock. Pesquisa Agropecuária Brasileira, 45(5), 457-464. doi: 10.1590/S0100-204X201 0000500004 DOI: https://doi.org/10.1590/S0100-204X2010000500004

Siqueira, R., Caramori, P. H., & Manetti, J., Fº. (1985). Climatic requirements for fruit development and ripening of Coffea arabica cultivars. Pesquisa Agropecuária Brasileira, 20(1), 1373-1379. doi: 10.1590/ S0006-87052009000100018

Verdin, A. C., Fº., Tomaz, M. A., Ferrão, R. G., Ferrão, M. A. G., Fonseca, A. F. A., & Rodrigues, W. N. (2014). Conilon coffee yield using the programmed pruning cycle and different cultivation densities. Coffee Science, 9(4), 489-494. doi: 10.25186/cs.v9i4.734

Downloads

Publicado

2022-11-17

Como Citar

Covre, A. M., Oliveira, M. G., Martins, L. D., Bonomo, R., Rodrigues, W. N., Tomaz, M. A., … Partelli, F. L. (2022). Como é modulado o desenvolvimento frutífero de Coffea canephora pelo abastecimento de água? Uma análise das curvas de crescimento para sistemas irrigados e não irrigado. Semina: Ciências Agrárias, 43(5), 2359–2374. https://doi.org/10.5433/1679-0359.2022v43n5p2359

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >> 

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.