Antimicrobial effect of bothropstoxin-i in broilers
DOI:
https://doi.org/10.5433/1679-0359.2021v42n1p267Keywords:
Biochemistry, Bothrops jararacussu, Nutrition, Phospholipase A2, Poultry, Snake venom.Abstract
Bacterial resistance is a sanitary issue explained by indiscriminate use of nonprescription drugs, and antimicrobial use in food production for growth promotion. Bothropstoxin-I (BthTx-I) is a phospholipase A2 (PLA2) from Bothrops jararacussu venom, which has a known antimicrobial effect. The goal of this study was the unprecedented evaluation of in vivo antimicrobial activity of BthTx-I in broilers. Microbiological, biochemical, and histological parameters were determined using 84 21-day old broilers that were kept in cages with four birds each at a density of 625 cm2/broiler. The experiment was randomized by three treatments with seven repetitions of four broilers each that lasted seven days. The treatments were: 1) bacitracin zinc diet; 2) PLA2-BthTx-I; 3) without additives. The data obtained from the studied variables was subjected to analysis of variance and an F-test at the 5% significance level. Averages of each variable in each treatment were compared by Tukey's test. Broiler bacterial cloacal counts showed that BthTx-I decreased the microbial population without reducing body weight, intestinal morphology, or liver or kidney histopathological damage. The toxin showed in vivo activity, being an alternative for better performance in the production of broiler chickens, because it acted by decreasing the microbial load of potentially pathogenic bacteria in the intestinal microbiota of the birds and did not cause muscle, liver or kidney damage at the assessed dosage.Downloads
References
Bitterncourt, L. C., Silva, C. C., Garcia, P. D. S. R., Donato, D. C. Z., Albuquerque, R., & Araújo, L. F. (2011). Influence of a probiotic on broiler performance. Revista Brasileira de Zootecnia, 40(12), 2739-2743. doi: 10.1590/S1516-35982011001200018
Bogucka, J., Dankowiakowska, A., Eilminowska-Wenda, G., Sobolewska, A., Jankowski, J., Szpinda M., & Bednarczyk, M. (2017). Annals of Animal Science, 17(1), 179-195. doi: 10.1515/aoas-2016-0048
Borsa, A., Kohayagawa, A., Boretti, L. P., Saito, M. E., & Kuibida, K. (2006). Níveis séricos de enzimas de função hepática em frangos de corte de criação industrial clinicamente saudáveis. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 58(4), 675-677. doi: 10.1590/S0102-09352006000400035
Calvete, J. J., Juarez, P., & Sanz, L. (2007). Snake venomics. Strategy and applications. Journal of Mass Spectrometry, 42(11), 1405-1414. doi: 10.1002/jms.1242
Cheng, G., Hao, H., Xie, S., Wang, X., Dai, M., Huang, L., & Yuan, Z. (2014). Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Frontiers in Microbiology, 5(art.217), 1-15. doi: 10. 3389/fmicb.2014.00217
Fernandes, P. (2002). Como produzir carne de aves e suínos sem o uso de antibióticos promotores de crescimento nas dietas. Anais do Congresso de Agribusiness, Rio de Janeiro, RJ, Brasil, 4. Recuperado de https://www.sna.agr.br/agribusiness/wp-content/uploads/4C_PauloFernandes.pdf
Ferreira, F. B., Gomes, M. S. R., Souza, D. L. N., Gimenes, S. N. C., Castanheira, L. E., Borges, M. H.,... Rodrigues, V. M. (2013) Molecular cloning and pharmacological properties of an acidic PLA2 from Bothrops pauloensis snake venom. Toxins, 5(12), 2403-2419. doi: 10.3390/toxins5122403
Furlan, R. L., Carvalho, N. C., Malheiros, E. B., & Macari, M. (2001). Efeito da restrição alimentar inicial e da temperatura ambiente sobre o desenvolvimento de vísceras e ganho compensatório em frangos de corte. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 53(4), 1-7. doi: 10.1590/S0102-0935 2001000400019
Homsi-Brandeburgo, M. I., Queiroz, L. S., Santo, H., Neto, Rodrigues-Simioni, L., & Giglio, J. R. (1988). Fractionation of Bothrops jararacussu snake venom: partial chemical characterization and biological activity of bothropstoxin. Toxicon : Official Journal of the International Society of Toxinology, 26(7), 615-627. doi: 10.1016/0041-0101(88)90244-9
Johnson, T. J., Youmans, B. P., Noll, S., Cardona, C., Evans, N. P., Karnezos, T. P.,… Lee, C.-W. (2018). A consistent and predictable commercial broiler chicken bacterial microbiota in antibiotic-free production displays strong correlations with performance. Applied and Environmental Microbiology, 84(12), e00362-18. doi: 10.1128/AEM.00362-18
Kaneko, J. J., Harvey, J. W., & Bruss, M. L (2008). Clinical biochemistry of domestic animal (6nd ed.). San Diego: Academic.
Lima, D. C., Abreu, P. A., Freitas, C. C., Santos, D. O., Borges, R. O., Santos, T. C.,… Castro, H. C. (2005). Snake venom: any clue for antibiotics and CAM? Evidence-Based Complementary and Alternative Medicine, 2(1), 39-47. doi: 10.1093/ecam/neh063
Lomonte, B., Angulo, Y., & Santamaria, C. (2003). Comparative study of synthetic peptides corresponding to region 115-129 in Lys49 myotoxic phospholipases A2 from snake venoms. Toxicon: Official Journal of the International Society of Toxinology, 42(3), 307-312. doi: 10.1016/s0041-0101(03)00149-1
Lomonte, B., Moreno, E., Tarkowski, A., Hanson, L. A., & Maccarana, M. (1994). Neutralizing interaction between heparins and myotoxin II, a lysine 49 phospholipase A2 from Bothrops asper snake venom. Identification of a heparin-binding and cytolytic toxin region by the use of synthetic peptides and molecular modeling. The Journal of Biological Chemistry, 269(47), 29867-29873.
Ministério da Agricultura, Pecuária e Abastecimento 2020. Instrução Normativa nº 1, de 13 de janeiro de 2020. Recuperado de https://www.in.gov.br/en/web/dou/-/instrucao-normativa-n-1-de-13-de-janeiro-de-2020-239402385
Ministério da Agricultura, Pecuária e Abastecimento 2018. Instrução Normativa nº 54, de 17 de dezembro de 2018. Recuperado de https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/ 57733217/do1-2019-01-03-instrucao-normativa-n-54-de-17-de-dezembro-de-2018-57733055
Marshall, B. M., & Levy, S. B. (2011). Food animals and antimicrobials: impacts on human health. Clinical Microbiology Reviews, 24(4), 718-733. doi: 10.1128/CMR.00002-11
Moravej, H., Moravej, Z., Yazdanparast, M., Heiat, M., Mirhosseini, A., Moghaddam, M. M., & Mirnejad R. (2018). Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microbial Drug Resistance, 24(6), 747-767. doi: 10.1089/mdr.2017.0392
Muaz, K., Riaz, M., Akhtar, S., Park, S., & Ismail, A. (2018). Antibiotic residues in chicken meat: global prevalence, threats, and decontamination strategies: a review. Journal of Food Protection, 81(4), 619-627. doi: 10.4315/0362-028X.JFP-17-086
Nunes, R. V., Scherer, C., Pozza, P. C., Eyng, C., Bruno, L. D. G., & Vieites, F. M. (2012). Use of probiotics to replace antibiotics for broilers. Revista Brasileira de Zootecnia, 41(10), 2219-2224. doi: 10.1590/ S1516-35982012001000012
Oliveira, N. G., Jr., Silva Cardoso, M. H., & Franco, O. L. (2013). Snake venoms: attractive antimicrobial proteinaceous compounds for therapeutic purposes. Cellular and Molecular Life Sciences, 70(24), 4645-4658. doi: 10.1007/s00018-013-1345-x
Paramo, L., Lomonte, B., Pizarro-Cerdá, J., Bengoechea, J. A., Gorvel, J. P., & Moreno, E. (1998). Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A2 from Bothrops asper snake venom--synthetic Lys49 myotoxin II-(115-129)-peptide identifies its bactericidal region. European Journal of Biochemistry, 253(2), 452-461. doi: 10.1046/j.1432-1327.1998.2530452.x
Pickler, L., Hayashi, R. M., Lourenço, M. C., Miglino, L. B., Caron, L. F., Beirão, B. C. B.,... Santin, E. (2012). Avaliação microbiológica, histológica e imunológica de frangos de corte desafiados com Salmonella Enteritidis e Minnesota e tratados com ácidos orgânicos. Pesquisa Veterinária Brasileira, 32(1), 27-36. doi: 10.1590/S0100-736X2012000100006
Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and Global Health, 109(7), 309-318. doi: 10.1179/2047773215Y.0000000 030
Ramos, L. S. N., Lopes, J. B., Silva, S. M. M. S., Silva, F. E. S., & Ribeiro, M. N. (2011). Desempenho e histomorfometria intestinal de frangos de corte de 1 a 21 dias de idade recebendo melhoradores de crescimento. Revista Brasileira de Zootecnia, 40(8), 1738-1744. doi: 10.1590/S1516-359820110008 00017
Ramos, O. H. P., & Selistre-de-Araujo, H. S. (2006). Snake venom metalloproteases - structure and function of catalytic and disintegrin domains. Comparative Biochemistry and Physiology. Toxicology & Pharmacology, 142(3-4), 328-346. doi: 10.1016/j.cbpc.2005.11.005
Ross, J. G., Christie, G., Halliday, W. G., & Jones, R. M. (1977). Haematological and blood chemistry "comparison values" for clinical pathology in poultry. The Veterinary Record, 102(2), 29-31. doi: 10. 1136/vr.102.2.29
Santos, M. J. B., Ludke, M. C. M. M., Ludke, J. V., Torres, T. R., Lopes, L. S., & Brito, M. S. (2013). Composição química e valores de energia metabolizável de ingredientes alternativos para frangos de corte. Ciência Animal Brasileira, 14(1), 32-40. doi: 10.5216/cab.v14i1.17697
Segrest, J. P., De Loof, H., Dohlman, J. G., Brouillette, C. G., & Anantharamaiah, G. M. (1990). Amphipathic helix motif: classes and properties. Proteins, 8(2), 103-117. doi: 10.1002/prot.340080202
Silva, E. N., & Duarte, A. (2002). Salmonella Enteritidis em aves: retrospectiva no Brasil. Revista Brasileira de Ciência Avícola, 4(2), 85-100. doi: 10.1590/S1516-635X2002000200001
Soares, A. M., Andrião-Escarso, S. H., Bortoleto, R. K., Rodrigues-Simioni, L., Arni, R. K., Ward, R. J.,.. Giglio, J. R. (2001). Dissociation of enzymatic and pharmacological properties of piratoxins-I and -III, two myotoxic phospholipases A2 from Bothrops pirajai snake venom. Archives of Biochemistry and Biophysics, 387(2), 188-196. doi: 10.1006/abbi.2000.2244
Soares, A. M., Guerra-Sá, R., Borja-Oliveira, C., Rodrigues, V. M., Rodrigues-Simioni, L., Rodrigues, V.,... Giglio, J. R. (2000). Structural and functional characterization of BnSP-7, a Lys49 myotoxic phospholipase A2 homologue from Bothrops neuwiedi pauloensis venom. Archives of Biochemistry and Biophysics, 378(2), 201-209. doi: 10.1006/abbi.2000.1790
Talebi Mehrdar, M., Madani, R., Hajihosseini, R., & Moradi Bidhendi, S. (2017). Antibacterial activity of isolated immunodominant proteins of Naja Naja (Oxiana) venom. Iranian Journal of Pharmaceutical Research, 16(1), 297-305. doi: 10.22092/ari.2017
Uni, Z., Ganot, S., & Sklan, D. (1998). Posthatch development of mucosal function in the broiler small intestine. Poultry Science, 77(1), 75-82. doi: 10.1093/ps/77.1.75
Valentin, E., & Lambeau, G. (2000). Increasing molecular diversity of secreted phospholipases A(2) and their receptors and binding proteins. Biochimica et Biophysica Acta, 1488(1-2), 59-70. doi: 10.1016/s 1388-1981(00)00110-4
Waldemarin, K. C. A., Beletti, M. E., & Costa, L. F. (2004). Nuclear morphometry of neoplastic cells as a method for diagnosis of histiocytoma, mastocytoma and transmissible venereal tumor in dogs. Real-Time Imaging, London, 10(4), 197-204. doi: 10.1016/j.rti.2004.05.003
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Semina: Ciências Agrárias

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.











