Influence of the application of biofertilizers on the control of Fusarium root rot and Fusarium wilt and on the growth of common bean plants
DOI:
https://doi.org/10.5433/1679-0359.2023v44n3p1225Keywords:
Alternative control, Fusarium oxysporum f. sp. phaseoli, Fusarium solani f. sp. phaseoli.Abstract
Beans hold significant food and socioeconomic value for the global population. However, bean production often faces reductions due to diseases instigated by soil pathogens. The extensive use of chemicals to control these diseases presents numerous disadvantages, such as environmental pollution, harm to human health, and imbalances in disease and pest dynamics. Certain commercial products, registered as biofertilizers or compost additives, can control plant pathogens. This study aimed to evaluate the performance of biofertilizers and compost additives, along with their mixtures, in controlling dry root rot (caused by Fusarium solani f. sp. phaseoli) and Fusarium wilt (caused by Fusarium oxysporum f. sp. phaseoli) in bean plants in a greenhouse setting. Additionally, the study examined the effect of these products and their mixtures on bean growth. A completely randomized design, with six replicates, was used. The treatments included Soil-Plex Trust®, Soil-Plex Ready®, Soil-Plex Active®, and Nem-Out®, along with their mixtures, a chemical fungicide Captan® (positive control), water (negative control), and a control group of plants without pathogen inoculation. Soil-Plex Trust® effectively reduced the severity of dry root rot. Soil-Plex Trust®, Soil-Plex Active®, and a Soil-Plex Ready + Soil-Plex Active® mixture promoted dry root weight equivalent to that of plants without Fusarium solani f. sp. phaseoli inoculation. Considering both inoculation methods, the application of Soil-Plex Trust® alone via in-furrow application reduced the severity of Fusarium wilt in common bean plants. Plants treated with Soil-Plex Trust® + SoilPlex Active®, and Soil-Plex Ready® + Soil-Plex Active® and inoculated with F. oxysporum f. sp. phaseoli by mycelial disk method, also exhibited lower severity of Fusarium wilt. The blends of Soil-Plex Trust® and Soil-Plex Active®, Soil-Plex Ready® and Soil-Plex Active®, and Nem-Out® and Soil-Plex Active® resulted in a root length equivalent to that of plants without Fusarium oxysporum f. sp. phaseoli inoculation. The results suggest that biofertilizers and compost additives based on Bacillus and Trichoderma can serve as a strategy to control diseases caused by Fusarium spp., and to mitigate the reductions in bean plants growth caused by these fungi.
Downloads
References
Ajilogba, C. F., Babalola, O. O., & Ahmad, F. (2013). Antagonistic effects of Bacillus species in biocontrol of tomato Fusarium wilt. Studies on Ethno-Medicine, 7(3), 205-216. doi: 10.1080/09735070.2013.11886462 DOI: https://doi.org/10.1080/09735070.2013.11886462
Báez-Vallejo, N., Camarena-Pozos, D. A., Monribot-Villanueva, J. L., Ramírez-Vázquez, M., Carrión-Villarnovo, G. L., Guerrero-Analco, J. A., & Reverchon, F. (2020). Forest tree associated bacteria for potential biological control of Fusarium solani and of Fusarium kuroshium, the causal agent of Fusarium dieback. Microbiological Research, 235(2020), 126440. doi: 10.1016/j.micres.2020.126440 DOI: https://doi.org/10.1016/j.micres.2020.126440
Batista, B. D., Lacava, P. T., Ferrari, A., Teixeira-Silva, N. S., Bonatelli, M. L., Tsui, S., Mondin, M., Jitajama, E. W., Pereira, J. O., Azevedo, J. L., & Quecine, M. C. (2018). Screening of tropically derived, multi-trait plant growth- promoting rhizobacteria and evaluation of corn and soybean colonization ability. Microbiological Research, 206(2018), 33-42. doi: 10.1016/j.micres.2017.09.007 DOI: https://doi.org/10.1016/j.micres.2017.09.007
Borba, M. C., De Garcés-Fiallos, F. R., Ribeiro, C. F., & Stadnik, M. J. (2020). Avaliação de potencial produtivo da linhagem de feijoeiro UFSC-01 e de resistência a Fusarium oxysporum f. sp. phaseoli. Anais do Encontro Sul-Brasileiro de Fitossanidade, Workshop Estadual Sobre Manejo Fitossanitário, Chapecó, SC, Brasil, 1, 3.
Cantoro, R., Palazzini, J. M., Yerkovich, N., Miralles, D. J., & Chulze, S. N. (2021). Bacillus velezensis RC 218 as a biocontrol agent against Fusarium graminearum: effect on penetration, growth and TRI5 expression in wheat spikes. BioControl, 66(2), 259-270. doi: 10.1007/s10526-020-10062-7 DOI: https://doi.org/10.1007/s10526-020-10062-7
Cerqueira, W., Morais, J., Miranda, J., Mello, I. K., & Santos, A. (2015). Influência de bactérias do gênero Bacillus sobre o crescimento de feijão comum (Phaseolus vulgaris L.). Enciclopédia Biosfera, 11(20), 82-93.
Coelho, R. A., Netto, & Dhingra, O. D. (1996). Method for evaluating bean genotype reaction to Macrophomina phaseolina. Fitopatologia Brasileira, 21(2), 236-242.
Das, K., Prasanna, R., & Saxena, A. K. (2017). Rhizobia: a potential biocontrol agent for soilborne fungal pathogens. Folia Microbiologica, 62(5), 425-435. doi: 10.1007/s12223-017-0513-z DOI: https://doi.org/10.1007/s12223-017-0513-z
Eke, P., Adamou, S., Fokom, R., Nya, V. D., Fokou, P. V. T., Wakam, L. N., Nwaga, D., & Boyom, F. F. (2020). Arbuscular mycorrhizal fungi alter antifungal potential of lemongrass essential oil against Fusarium solani, causing root rot in common bean (Phaseolus vulgaris L.). Heliyon, 6(12), e05737. doi: 10.1016/j.heliyon.2020.e05737 DOI: https://doi.org/10.1016/j.heliyon.2020.e05737
Elhelaly, S. H., & Ammar, H. A. (2022). Bio-efficacy of some botanicals, Antagonistic fungi, and Fungicides against Fusarium oxysporum f. sp. phaseoli causing Fusarium wilt on common bean plants. Egyptian Journal of Crop Protection, 17 (1), 1-14. doi: 10.21608/EJCP.2022.224757 DOI: https://doi.org/10.21608/ejcp.2022.224757
Ferreira, P. S. F., & Tebaldi, N. D. (2019). Inoculation methods of Xanthomonas campestris pv. passiflorae in passion fruits and biofertilizers on bacterial growth inhibition in vitro. Summa Phytopathologica, 45(2), 207-209. doi: 10.1590/0100-5405/185793 DOI: https://doi.org/10.1590/0100-5405/185793
Fira, D., Dimkić, I., Berić, T., Lozo, J., & Stanković, S. (2018). Biological control of plant pathogens by Bacillus species. Journal of Biotechnology, 285(2018), 44-55. doi: 10.1016/j.jbiotec.2018.07.044 DOI: https://doi.org/10.1016/j.jbiotec.2018.07.044
Fischer I. H., Bueno C. J., Garcia M. J. M., & Almeida A. M. (2010). Reação de maracujazeiro amarelo ao complexo fusariose-nematoide de galha. Acta Scientiarum. Agronomia, 32(2), 223-227. doi: 10.4025/actasciagron.v32i2.3445 DOI: https://doi.org/10.4025/actasciagron.v32i2.3445
Guzmán-Guzmán, P., Kumar, A., de los Santos-Villalobos, S., Parra-Cota, F. I., Orozco-Mosqueda, M. del C., Fadiji, A. E., Hyder, S., Babalola, O. O., & Santoyo, G. (2023). Trichoderma species: our best fungal allies in the biocontrol of plant diseases - a review. Plants, 12(3), 432. doi: 10.3390/plants12030432 DOI: https://doi.org/10.3390/plants12030432
Ishizuka, M. S., Castro, R. R. L. D., Moraes, M. H. D. D., & Menten, J. O. M. (2020). Effect of chemical and biological seed treatments on common bean seeds inoculated with Fusarium oxysporum f. sp. phaseoli. Arquivos do Instituto Biológico, 87(2020), 1-10. doi: 10.1590/1808-1657000702018 DOI: https://doi.org/10.1590/1808-1657000702018
Kalantari, S., Marefat, A., Naseri, B., & Hemmati, R. (2018). Improvement of bean yield and Fusarium root rot biocontrol using mixtures of Bacillus, Pseudomonas and Rhizobium. Tropical Plant Pathology, 43(6), 499-505. doi: 10.1007/s40858-018-0252-y DOI: https://doi.org/10.1007/s40858-018-0252-y
Katan, J. (2017). Diseases caused by soilborne pathogens: biology, management and challenges. Journal of Plant Pathology, 99(2), 305-315. http://www.jstor.org/stable/44686775
Khalil, M., & Hassouna, B. (2022). Effect of Some microorganisms and chemical stimulants on resistance to Fusarium roots rot and on growth characteristics of beans. Middle East Journal of Agriculture Research, 11(1), 121-133. doi:10.36632/mejar/2022.11.1.11 DOI: https://doi.org/10.36632/mejar/2022.11.1.11
Khan, M., Salman, M., Jan, S. A., & Shinwari, Z. K. (2021). Biological control of fungal phytopathogens: a comprehensive review based on Bacillus species. MOJ Biology and Medicine, 6(2), 90-92. doi: 10.15406/mojbm.2021.06.00137 DOI: https://doi.org/10.15406/mojbm.2021.06.00137
Kriaa, M., Hammam, I., Sahnoun, M., Azebou, M. C., Triki, M. A., & Kammoun, R. (2015). Biocontrol of tomato plant diseases caused by Fusarium solani using a new isolated Aspergillus tubingensis CTM 507 glucose oxidase. Comptes Rendus Biologies, 338(10), 666-677. doi: 10.1016/j.crvi.2015.05.007 DOI: https://doi.org/10.1016/j.crvi.2015.05.007
Leitão, S. T., Malosetti, M., Song, Q., Van Eeuwijk, F., Rubiales, D., & Patto, M. C. V. (2020). Natural variation in Portuguese common bean germplasm reveals new sources of resistance against Fusarium oxysporum f. sp. phaseoli and resistance-associated candidate genes. Phytopathology®, 110(3), 633-647. doi: 10.1094/PHYTO-06-19-0207-R DOI: https://doi.org/10.1094/PHYTO-06-19-0207-R
Liu, D., Li, K., Hu, J., Wang, W., Liu, X., & Gao, Z. (2019). Biocontrol and action mechanism of Bacillus amyloliquefaciens and Bacillus subtilis in soybean phytophthora blight. International Journal of Molecular Sciences, 20(12), 2908. doi: 10.3390/ijms20122908 DOI: https://doi.org/10.3390/ijms20122908
Miamoto, A., Rodrigues, M. R., Puerari, H. H., & Dias-Arieira, C. R. (2017). Alternative products for Pratylenchus brachyurus and Meloidogyne javanica management in soya bean plants. Journal of Phytopathology, 165(10), 635-640. doi: 10.1111/jph.12602 DOI: https://doi.org/10.1111/jph.12602
Michereff, M., Fº., Michereff, S. J., Silva, E. B., Andrade, D. E. G. T., Antunes, S., Sobrinho, Noronha, M. A., & Mariano, R. L. R. (1996). Influência de tipos de solo do estado de Pernambuco na intensidade da doença induzida por Rhizoctonia solani em feijoeiro. Fitopatologia Brasileira, 21(1), 19-25.
Moura, I. N. B. M., Silva, J. L. S., Pereira, J. A. R., Santos, A. S., Melo, M. F., Figueiredo, F. R. A., Nunes, G. H. S., Araújo, M. B. M., & Ambrósio, M. M. Q. (2022). Influence of soil treatments on Macrophomina phaseolina survival and Cucumis melo growth. Journal of Plant Pathology, 104(2), 769-774. doi: 10.1007/s42161-022-01041-1 DOI: https://doi.org/10.1007/s42161-022-01041-1
Naseri, B., & Hamadani, S. A. (2017). Characteristic agro-ecological features of soil populations of bean root rot pathogens. Rhizosphere, 3(1), 203-208. doi: 10.1016/j.rhisph.2017.05.005 DOI: https://doi.org/10.1016/j.rhisph.2017.05.005
Naseri, B., Shobeiri, S. S., & Tabande, L. (2016). A intensidade de uma epidemia de podridão radicular de Fusarium do feijoeiro depende das estratégias de plantio. Journal of Phytopathology, 164(3), 147-154. doi: 10.1111/jph.12438 DOI: https://doi.org/10.1111/jph.12438
Nogueira, G. D. A., Silva, S. G. D. A., Linhares, C. M. D. S., Ambrósio, M. M. D. Q., & Nunes, G. H. D. S. (2019). Métodos de inoculação de Fusarium solani e Sclerotium rolfsii em meloeiro. Summa Phytopathologica, 45(1), 59-63. doi: 10.1590/0100-5405/187147 DOI: https://doi.org/10.1590/0100-5405/187147
Pastor-Corrales, M. A., & Abawi, G. S. (1987). Reactions of selected bean germ plasms to infection by Fusarium oxysporum f. sp. phaseoli. Plant Disease, 71(11), 990-993. DOI: https://doi.org/10.1094/PD-71-0990
Pasvolsky, R., Zakin, V., Ostrova, I., & Shemesh, M. (2014). Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species. International Journal of Food Microbiology, 181(2014), 19-27. doi: 10.1016/j.ijfoodmicro.2014.04.013 DOI: https://doi.org/10.1016/j.ijfoodmicro.2014.04.013
Paulino, J. F. C., Almeida, C. P., Gonçalves, G. M. C., Bueno, C. J., Carbonell, S. A. M., Chiorato, A. F., & Bechimol-Reis, L. L. (2020). Assessment of resistance in common bean to Fusarium oxysporum f. sp. phaseoli using different inoculation and evaluation methods. Crop Breeding and Applied Biotechnology, 20(3), 1-6. doi: 10.1590/1984-70332020v20n3n45 DOI: https://doi.org/10.1590/1984-70332020v20n3n45
Podile, A. R., & Kishore, G. K. (2006). Rizobactérias promotoras do crescimento de plantas. Bactérias associadas a plantas. Springer.
Porteous-Álvarez, A. J., Mayo-Prieto, S., Álvarez-García, S., Reinoso, B., & Casquero, P. A. (2020). Genetic response of common bean to the inoculation with indigenous Fusarium isolates. Journal of Fungi, 6(4), 1-13. doi: 10.3390/jof6040228 DOI: https://doi.org/10.3390/jof6040228
Quadros, F. M., Freitas, M. B. de Simioni, C., Ferreira, C., & Stadnik, M. J. (2020). Redox status regulation and action of extra-and intravascular defense mechanisms are associated with bean resistance against Fusarium oxysporum f. sp. phaseoli. Protoplasma, 257(5), 1457-1472. doi: 10.1007/s00709-020-01521-0 DOI: https://doi.org/10.1007/s00709-020-01521-0
Rodrigues, V. W. B., Bueno, T. V., & Tebaldi, N. D. (2016). Biofertilizantes no controle da mancha bacteriana (Xanthomonas spp.) do tomateiro. Summa Phytopathologica, 42(1), 94-96. doi: 10.1590/0100-5405/2094 DOI: https://doi.org/10.1590/0100-5405/2094
Rubiales, D., Fondevilla, S., Chen, W., Gentzbittel, L., Higgins, T. J. V., Castillejo, M. A., Singh, K. B., & Rispail, N. (2014). Achievements and challenges in legume breeding for pest and disease resistance. Critical Reviews in Plant Sciences, 34(1-3), 195-236. doi: 10.1080/07352689.2014.898445 DOI: https://doi.org/10.1080/07352689.2014.898445
Sabaté, D. C., Brandan, C. P., Petroselli, G., Erra-Balsells, R., & Audisio, M. C. (2018). Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Microbiological Research, 211(2018), 21-30. doi: 10.1016/j.micres.2018.04.003 DOI: https://doi.org/10.1016/j.micres.2018.04.003
Saeid, A., Prochownik, E., & Dobrowolska-Iwanek, J. (2018). Phosphorus solubilization by Bacillus species. Molecules, 23(11), 2897. doi: 10.3390/molecules23112897 DOI: https://doi.org/10.3390/molecules23112897
Schoonhoven, A. V., & Pastor-Corrales, M. A. (1987). Standard system for the evaluation of bean germplasm.
Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment, 31(3), 446-459. doi: 10.1080/13102818.2017.1286950 DOI: https://doi.org/10.1080/13102818.2017.1286950
Soares, M. R. C., Dias-Arieira, C. R., & Lopes, A. P. M. (2021). Seed treatments for control of Meloidogyne graminicola in flooded rice. European Journal of Plant Pathology, 160(4), 901-915. doi: 10.1007/s10658-021-02294-9 DOI: https://doi.org/10.1007/s10658-021-02294-9
Tolêdo-Souza, E. D., Lobo, M., Jr., Silveira, P. M., & Café, A. C., Fº. (2009). Interações entre Fusarium solani f. sp. phaseoli e Rhizoctonia solani na severidade da podridão radicular do feijoeiro. Pesquisa Agropecuária Tropical, 39(1), 13-17.
Villa-Rodríguez, E., Parra-Cota, F., Castro-Longoria, E., López-Cervantes, J., & de los Santos-Villalobos, S. (2019). Bacillus subtilis TE3: a promising biological control agent against Bipolaris sorokiniana, the causal agent of spot blotch in wheat (Triticum turgidum L. subsp. durum). Biological Control, 132(2019), 135-143. doi:10.1016/j.biocontrol.2019.02.012 DOI: https://doi.org/10.1016/j.biocontrol.2019.02.012
Villarreal-Delgado, M. F., Villa-Rodríguez, E. D., Cira-Chávez, L. A., Estrada-Alvarado, M. I., Parra-Cota, F. I., & Santos-Villalobos, S. D. L. (2018). The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity. Revista Mexicana de Fitopatología, 36(1), 95-130. doi: 10.18781/R.MEX.FIT.1706-5 DOI: https://doi.org/10.18781/R.MEX.FIT.1706-5
Wagi, S., & Ahmed, A. (2019). Bacillus spp.: potent microfactories of bacterial IAA. PeerJ, 7, 1-14. doi: 10.7717/peerj.7258 DOI: https://doi.org/10.7717/peerj.7258
Wang, C., Ye, X., Ng, T. B., & Zhang, W. (2021). Study on the biocontrol potential of antifungal peptides produced by Bacillus velezensis against Fusarium solani that infects the passion fruit Passiflora edulis. Journal of Agricultural and Food Chemistry, 69(7), 2051-2061. doi: 10.1021/acs.jafc.0c06106 DOI: https://doi.org/10.1021/acs.jafc.0c06106
Zitnick-Anderson, K., Oladzadabbasabadi, A., Jain, S., Modderman, C., Osorno, J. M., McClean, P. E., & Pasche, J. S. (2020). Sources of resistance to Fusarium solani and associated genomic regions in common bean diversity panels. Frontiers in Genetics, 11(2020), 1-14. doi: 10.3389/fgene.2020.00475 DOI: https://doi.org/10.3389/fgene.2020.00475
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.