Beef cow weight variations during gestation and offspring performance: a meta-analysis

Authors

DOI:

https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3961

Keywords:

Birth weight, Calves, Fetal programming.

Abstract

The objective of this meta-analysis was to evaluate the effects of weight loss or weight gain of beef cows during the second and/or third trimester of gestation on the postnatal performance of the progeny. The variation in cow weight during the gestational period was calculated to standardize the treatments, being them: severe loss (SL = cows that lost more than 10% of weight); moderate loss (ML = cows that lost from 0 to 10% of weight) and weight gain (WG = cows that gained weight). The intensity of the cow weight variation effect was calculated as the mean difference (MD) with a 95% confidence interval and heterogeneity determined using the Q test and the I2 statistic. A meta-analysis of random effects was conducted for each indicator separately with the means of the control and experimental groups. Calves from WG cows were higher for birth weight (P = 0.0094); weight adjusted to 205 days (P = 0.0127) and average daily gain during pre-weaning (P < 0.0001) in relation to calves from ML cows. The W205 of calves from SL cows was 11.6 kg lower than the progeny from ML cows. The post-weaning performance of the progeny tended (P = 0.0868) to be higher in the progeny of WG cows than ML ones. The weight gain of beef cows during gestation improves the pre- and post-weaning performance of the progeny, with more evident effects in the early months of life of the offspring.

Downloads

Download data is not yet available.

Author Biographies

John Lenon Klein, Universidade Federal de Santa Maria

Doctoral Student of the Postgraduate Program in Animal Science, Universidade Federal Santa Maria, UFSM, Santa Maria, RS, Brazil.

Diego Soares Machado, Universidade do Estado de Santa Catarina

Prof. Dr. of the Department of Animal Science, Universidade do Estado de Santa Catarina, UDESC, Chapecó, SC, Brazil.

Sander Martinho Adams, Universidade Federal de Santa Maria

Doctoral Student of the Postgraduate Program in Animal Science, Universidade Federal Santa Maria, UFSM, Santa Maria, RS, Brazil.

Luciana Pötter, Universidade Federal de Santa Maria

Profa Dra of the Department of Animal Science, UFSM, Santa Maria, RS, Brazil.

Dari Celestino Alves Filho, Universidade Federal de Santa Maria

Prof. Dr. of the Department of Animal Science, UFSM, Santa Maria, RS, Brazil.

Ivan Luiz Brondani, Universidade Federal de Santa Maria

Prof. Dr. of the Department of Animal Science, UFSM, Santa Maria, RS, Brazil.

References

Bohnert, D. W., Stalker, L. A., Nyman, A., Falck, S. J., & Cooke, R. F. (2013). Late gestation supplementation of beef cows differing in body condition score: Effects on cow and calf performance. Journal of Animal Science, 91(1), 5485-5491. doi: 10.2527/jas2013-6301

Brameld, J. M., Greenwood, P. L., & Bell, A. W. (2010). Biological mechanisms of fetal development relating to postnatal growth, efficiency and carcass characteristics in ruminants. In P. L. Greenwood, A. W. Bell, P. E. Vercoe, & G. J. Viljoen (Eds.), Managing the prenatal environment to enhance livestock productivity (pp. 93-120). Dordrecht: Springer Science and Business Media.

Capes (2020). Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Portal de Periódicos Capes/Mec. Available at: http://www.periodicos.capes.gov.br

Du, M., Huang, Y., Das, A. K., Duarte, M. S., Dodson, M. V., & Zhu, M. J. (2013). Manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. Journal of Animal Science, 91(1), 1419-1427. doi: 10.2527/jas2012-5670

Du, M., Tong, J., Zhao, J., Underwood, K. R., Zhu, M. J., Ford, S. P., & Nathanielsz, P. W. (2010). Fetal programming of skeletal muscle development in ruminant animals. Journal of Animal Science, 88(1), 51-60. doi: 10.2527/jas.2009-2311

Du, M., Wang, B., Fu, X., Yang, Q., & Zhu, M. J. (2015). Fetal programming in meat production. Meat Science, 109(1), 40-47. doi: 10.1016/j.meatsci.2015.04.010

Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(1), 629-634. doi: 10.1136/bmj.315.7109.629

Elsevier (2020). Science Direct. Available at: http://www.sciencedirect.com

Funston, R. N., Martin, J. L., Adams, D. C., & Larson, D. M. (2010). Winter grazing system and supplementation of beef cows during late gestation influence heifer progeny. Journal Animal Science, 88(1), 4094-4101. doi: 10.2527/jas.2010-3039

Google Scholar (2020). Google Scholar. Retrieved from http://www.scholar.google.com

Greenwood, P. L., Thompsom, A. N., & Ford, S. P. (2010). Posnatal consequences of the maternal environment and growth during prenatal life for productivity of ruminants. In P. L. Greenwood, A. W. Bell, P. E. Vercoe, & G. J. Viljoen (Eds.), Managing the prenatal environment to enhance livestock productivity (pp. 3-36). Dordrecht: Springer Science and Business Media.

Gutiérrez, V., Espasandín, A. C., Machado, P., Bielli, A., Genovese, P., & Carriquiry, M. (2014). Effects of calf early nutrition on muscle fiber characteristics and gene expression. Livest Science, 167(1), 4018-416. doi: 10.1016/j.livsci.2014.07.010

Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. Pub Med, 327(6), 557-560. doi: 10.1136/bmj.327.7414.557

Keomanivong, F. E., Camacho, L. A., Lemley, C. O., Kuemper, E. A., Yunusova, R. D., Borowicz, P. P.,… Swanson, K. C. (2016). Effects of realimentation after nutrient restriction during mid- to late gestation on pancreatic digestive enzymes, serum insulin and glucose levels, and insulin-containing cell cluster morphology. Journal of Animal Phisiology and Animal Nutrition, 101(10), 589-604. doi: 10.1111/jpn.12480

Klein, J. L. (2019). Nutrição no terço final da gestação: eficiência produtiva da vaca e desempenho da progênie até os doze meses de idade. Dissertação de mestrado, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.

Klein, J. L., Machado, D. S., Adams, S. M., Alves, D. C., Fº., & Brondani, I. L. (2021). Efeitos da nutrição materna na gestação sobre a qualidade da progênie - uma revisão. Research, Society and Development, 10(2), 1-10. doi: 10.33448/rsd-v10i2.12654

Larson, D. M., Martin, J. L., Adams, D. C., & Funston, R. N. (2009). Winter grazing system and supplementation during late gestation influence performance of beef cows and steer progeny. Journal of Animal Science, 87(1), 1147-1155. doi: 10.2527/jas.2008-1323

Lean, I. J., Thompson, J. M., & Dunshea, F. R. (2014). A meta-analysis of zilpaterol and ractopamine effects on feedlot performance, carcass traits and shear strength of meat in cattle. PLoS One 9(12), 1-28. doi: 10.1371/journal

LeMaster, C. T., Taylor, R. K., Ricks, R. E., & Long, N. M. (2017). The effects of late gestation maternal nutrient restriction whit or without protein supplementation on endocrine regulation of newborn and postnatal beef calves. Theriogenology, 87(1), 64-71. doi: 10.1016/j.theriogenology.2016.08.004

Maresca, S., Lopez Valiente, S., Rodriguez, A. M., Long, N. M., Pavan, E., & Quintans, G. (2018). Effect of protein restriction of bovine dams during late gestation on offspring postnatal growth, glucose-insulin metabolism and IGF-1 concentration. Livestock Science, 212(1), 120-126. doi: 10.1016/j.livsci.2018.04.009

Maresca, S., López Valiente, S., Rodriguez, A. M., Testa, L. M., Long, N. M., Quintans, G. I., & Pavan, E. (2019). The influence of protein restriction during mid- to late gestation on beef offspring growth, carcass characteristic and meat quality. Meat Science, 153(1), 103-108. doi: 10.1016/j.meatsci.2019.03.014

Marques, R. S., Cooke, R. F., Rodrigues, M. C., Moriel, P., & Bohnert, D. W. (2016). Impacts of cow body condition score during gestation on weaning performance of the offspring. Livestock Science, 191(1), 174-178. doi: 10.1016/j.livsci.2016.08.007

McCarty, K. J., Washburn, J. L., Taylor, R. K., & Long, N. M. (2020). The effects of early or mid-gestation nutrient restriction on bovine fetal pancreatic development. Domestic Animal Endocrinology, 70(1), 1-6. doi: 10.1016/j.domaniend.2019.07.005

Mulliniks, J. T., Mathis, C. P., Cox, S. H., & Petersen, M. K. (2013). Supplementation strategy during late gestation alters steer progeny health in the feedlot without affecting cow performance. Animal Feed Science and Technology, 185(1), 126-132. doi: 10.1016/j.anifeedsci.2013.07.006

R Core Team (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Ramírez, M., Testa, L. M., Valiente, S. L., La Torre, E., Long, N. M., Rodriguez, A. M.,... Maresca, S. (2020). Maternal energy status during late gestation: Effects on growth performance, carcass characteristics and meat quality of steers progeny. Meat Science, 164(1), 1-7. doi: 10.1016/j.meatsci.2020.108095

Reynolds, L. P., Borowicz, P. P., Caton, J. S., Crouse, M. S., Dahlen, C. R., & Ward, A. K. (2019). Developmental programming of fetal growth and development. Veterinary Clinics Food Animal, 35(1), 229-247. doi: 10.1016/j.cvfa.2019.02.006

Rodrigues, L. S. (2019). Nutrição no terço final da gestação: eficiência produtiva da vaca e desempenho da progênie até os doze meses de idade. Tese de doutorado, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.

Rodrigues, L. S., Moura, A. F. de, Alves, D. C., Fº., Brondani, I. L., Klein, J. L., Adams, S. M.,... Pereira, L. B. (2021). Análise de componentes principais da variação de peso da vaca durante a gestação na programação fetal de fêmeas. Research, Society and Development, 10(2), e14110212077. doi: 10.33448/rsd-v10i2.12077

Schwarzer, G. (2016). Meta: general package for meta-analysis Retrieved from https://cran.r-project.org/web/packages/meta/index.html

Scielo (2020). Scientific Electronic Library Online. Retrieved from http://www.scielo.br(alterar)

Taylor, A. R., Mohrhauser, D. A., Pritchard, R. H., Underwood, K. R., Wertz-Lutz, A. E., & Blair, A. D. (2016). The influence of maternal energy status during mid-gestation on growth, cattle performance, and the immune response in the resultant beef progeny. The Professional Animal Scientist, 32(1), 389-399. doi: 10.15232/pas.2015-01469

Tsuneda, P. P., Hatamoto-Zervoudadakls, L. K., Duarte, M. F., Jr., Silva, L. E. S., Delbem, R. A., & Motheo, T. F. (2017). Efeitos da nutrição materna sobre o desenvolvimento e performance reprodutiva da prole de ruminantes. Investigação, 16(1), 56-61. doi: 10.26843/investigacao.v16i1.1790

Webb, M. J., Block, J. J., Funston, R. N., Underwood, K. R., Legako, J. F., Harty, A. A.,… Blair, A. D. (2019). Influence of maternal protein restriction in primiparous heifers during mid and/or late-gestation on meat quality and fatty acid profile of progeny. Meat Science, 152(1), 31-37. doi: 10.1016/j.meatsci.2019.02.006

Wilson, T. B., Schroeder, A. R., Ireland, F. A., Faulkner, D. B. & Shike, D. W. (2015). Effects of late gestation distillers grains supplementation on fall-calving beef cow performance and steer calf growth and carcass characteristics. Journal of Animal Science, 93(1), 4843-4851. doi: 10.2527/jas2015-9228

Wilson, T. B., Faulkner, D. B., & Shike, D. W. (2016). Influence of prepartum dietary on beef cow performance and calf growth and carcass characteristics. Livestock Science, 184(1), 21-27. doi: 10.1016/j.livsci.2015.12.004

Downloads

Published

2021-10-08

How to Cite

Klein, J. L., Machado, D. S., Adams, S. M., Pötter, L., Alves Filho, D. C., & Brondani, I. L. (2021). Beef cow weight variations during gestation and offspring performance: a meta-analysis. Semina: Ciências Agrárias, 42(6SUPL2), 3961–3976. https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3961

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 > >> 

Similar Articles

You may also start an advanced similarity search for this article.