Co-supplementation of colostrum powder on performance, intestinal morphology, blood biochemical parameters and antioxidant status of broilers in heat stress
DOI:
https://doi.org/10.5433/1679-0359.2020v41n6Supl2p3419Keywords:
Antioxidant, Broilers, Carcass traits, Heat stress, Performance.Abstract
This experiment was conducted to investigate the effects of different levels of colostrum powder on performance, intestinal morphology, blood biochemical parameters and antioxidant status of broilers in heat stress. In this experiment 224 Ross-308 broiler chicks were used from 1 to 42 days in 5 treatments and 4 replicates (12 birds per replicate) in a completely randomized design. Treatments included: 1) control (without using colostrum), 2) 0.5% of colostrum, 3) 1% of colostrum, 4) 1.5% of colostrum, and 5) 2% of colostrum powder. Colostrum powder was added in first 10 days of broilers breeding period in their diets. Colostrum powder had significant effects on performance, carcass traits and intestinal cells morphology of broilers in heat stress (P < 0.05). In grower period the highest amounts of final body weight and body weight gain were obtained with 2% of colostrum powder. Colostrum powder in contrast to control improved the percentages of gizzard, liver, bursa of fabricious, thighs and breast (P > 0.05). The highest villies, the lowest crypts and the highest ratio of villies/crypts were obtained with colostrum powder adding (P > 0.05). Colostrum powder had no significant effects on blood biochemical parameters and antioxidant status of broilers. The overall resulted showed that in broilers in heat stress condition using colostrum powder up to 2% in starter period has beneficial effects on performance, carcass traits and intestinal morphology of broilers.Downloads
References
Allahdo, P., Ghodraty, J., Zarghi, H., Saadatfar, Z., Kermanshahi, H., & Edalatian Dovom, M. R. (2018). Effect of probiotic and vinegar on growth performance, meat yields, immune responses, and small intestine morphology of broiler chickens. Italian Journal of Animal Science, 17(3), 675-685. doi: 10. 1080/1828051X.2018.1424570
Del Puerto, M., Cabrera, M. C., & Saadoun, A. (2017). A note on fatty acids profile of meat from broiler chickens supplemented with inorganic or organic selenium. International Journal of Food Science, 7613069, 8 págs. doi: 10.1155/2017/7613069
Elliott, K. E. C., Branton, S. L., Evans, J. D., & Peebles, E. D. (2018). Early post-hatch survival and humoral immune response of layer chickens when in ovo vaccinated with strain F Mycoplasma gallisepticum. Poultry Science, 97(11), 3860-3869. doi: 10.3382/ps/pey282
Elwan, H. A., Elnesr, S. S., Xu, Q., Xie, C., Dong, X., & Zou, X. (2019). Effects of in ovo methionine-cysteine injection on embryonic development, antioxidant status, IGF-I and tlr4 gene expression, and jejunum histomorphometry in newly hatched broiler chicks exposed to heat stress during incubation. Animals, 9(1), 25. doi: 10.3390/ani9010025
Gallo, S. B., Moretti, D. B., Oliveira, M. C., Santos, F. F. dos, Brochine, L., Micai, G.,... Tedeschi, L. O. (2020). The colostrum composition of sheep fed with high-energy diets supplemented with chromium. Small Ruminant Research, 191, 106177. doi: 10.1016/j.smallrumres.2020.106177
Gomes, A., Quinteiro, W., Fº., Ribeiro, A., Ferraz-de-Paula, V., Pinheiro, M., Baskeville, E., & Palermo, J., Neto. (2014). Overcrowding stress decreases macrophage activity and increases Salmonella Enteritidis invasion in, broiler chickens. Avian Pathology, 43(1), 82-90. doi: 10.1080/03079457.2013.874006
Hammon, H. M., Liermann, W., Frieten, D., & Koch, C. (2020). Importance of colostrum supply and milk feeding intensity on gastrointestinal and systemic development in calves. Animal, 14(S1), s133-s143. doi: 10.1017/S1751731119003148
Ijiri, D., Ishitani, K., El Deep, M. M. H., Kawaguchi, M., Shimamoto, S., Ishimaru, Y., & Ohtsuka, A. (2016). Single injection of clenbuterol into newly hatched chicks decreases abdominal fat pad weight in growing broiler chickens. Animal Science Journal, 87(10), 1298-1303. doi: 10.1111/asj.12541
Jha, R., Singh, A. K., Yadav, S., Berrocoso, J. F. D., & Mishra, B. (2019). Early nutrition programming (in ovo and post-hatch feeding) as a strategy to modulate gut health of poultry. Frontiers in Veterinary Science, 6, 82. doi: 10.3389/fvets.2019.00082
Jrad, Z., Oussaief, O., Khorchani, T., & El-Hatmi, H. (2020). Camel colostrum composition, nutritional value, and nutraceuticals. In Nome dos Editores, Handbook of research on health and environmental benefits of camel products (pp. 240-262). IGI Global. doi: 10.4018/978-1-7998-1604-1.ch011
Kamal, R., Dey, A., Mondal, K. G., & Chandran, P. C. (2018). Impact of Environmental Stressors on the Performance of Backyard Poultry. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88(1), 79-84. doi: 10.1007/s40011-016-0741-z
Kusandi, E., & Djulardi, A. (2011). Physiological dynamic of broiler at various environmental temperatures. International Journal of Poultry Science, 10(1), 19-22. Recovered from http://free-journal.umm ac.id/ files/file/Physiology_Broiler.pdf
Mashayekhi, H., Mazhari, M., & Esmaeilipour, O. (2018). Eucalyptus leaves powder, antibiotic and probiotic addition to broiler diets: effect on growth performance, immune response, blood components and carcass traits. Animal: an International Journal of Animal Bioscience, 12(10), 2049-2055. doi: 10. 1017/S1751731117003731
Nazem, M. N., Amiri, N., & Tasharrofi, S. (2019). Effect of in ovo feeding of amino acids and dextrose solutions on hatchability, body weight, intestinal development and liver glycogen reserves in newborn chicks. In Veterinary Research Forum, 10(4), 323. doi: 10.30466/vrf.2018.69536.1956
Palangi, V., & Macit, M. (2019). In situ crude protein and dry matter ruminal degradability of heat-treated barley. Revue de Medecine Veterinaire, 170(7-9), 123-128.
Prabakar, G., Pavulraj, S., Shanmuganathan, S., Kirubakaran, A., & Mohana, N. (2016). Early nutrition and its importance in poultry: a review. Indian Journal of Animal Nutrition, 33(3), 245-252. doi: 10.5958/ 2231-6744.2016.00044.X
Reyes-Camacho, D., Vinyeta, E., Pérez, J. F., Aumiller, T., Criado, L., Palade, L. M.,... Solà-Oriol, D. (2020). Phytogenic actives supplemented in hyperprolific sows: effects on maternal transfer of phytogenic compounds, colostrum and milk features, performance and antioxidant status of sows and their offspring, and piglet intestinal gene expression. Journal of Animal Science, 98(1), skz390. doi: 10. 1093/jas/skz390
Saeed, M., Babazadeh, D., Naveed, M., Arain, M. A., Hassan, F. U., & Chao, S. (2017). Reconsidering betaine as a natural anti-heat stress agent in poultry industry: a review. Tropical Animal Health and Production, 49(7), 1329-1338. doi: 10.1007/s11250-017-1355-z
Sarlak, S., Tabeidian, S. A., & Gheisari, A. (2017). Effects of time of initiation of feeding after hatching and diet composition on performance, carcass characteristics, digestive tract development and immune responses of broilers. Animal Production Science, 57(8), 1692-1701. doi: 10.1071/AN15839
Shah, T. M., Patel, J. G., Gohil, T. P., Blake, D. P., & Joshi, C. G. (2019). Host transcriptome and microbiome interaction modulates physiology of full-sibs broilers with divergent feed conversion ratio. Biofilms and Microbiomes, 5(1), 1-13. doi: 10.1038/s41522-019-0096-3
Shukla, P. K., Kumar, A., & Sharma, A. (2017). Stressors and their biochemical indicators in poultry. International Journal of Agriculture and Biology, 4(1), 29. doi: 10.21088/ijab.2454.7964.4118.5
Surai, P. F., Fisinin, V. I., & Karadas, F. (2016). Antioxidant systems in chick embryo development. Part 1. Vitamin E, carotenoids and selenium. Animal Nutrition, 2(1), 1-11. doi: 10.1016/j.aninu.2016.01.001
Surai, P. F., Kochish, I. I., Fisinin, V. I., & Kidd, M. T. (2019). Antioxidant defence systems and oxidative stress in poultry biology: an update. Antioxidants, 8(7), 235. doi: 10.3390/antiox8070235
Szyndler-Nędza, M., Mucha, A., & Tyra, M. (2020). The effect of colostrum lactose content on growth performance of piglets from Polish Large White and Polish Landrace sows. Livestock Science, 234(2020), 103997. doi: 10.1016/j.livsci.2020.103997
Verso, L. L., Matte, J. J., Lapointe, J., Talbot, G., Bissonnette, N., Blais, M.,... Lessard, M. (2020). Impact of birth weight and neonatal nutritional interventions with micronutrients and bovine colostrum on the development of piglet immune response during the peri-weaning period. Veterinary Immunology and Immunopathology, 226(2020), 110072. doi: 10.1016/j.vetimm.2020.110072
Wang, X., Zhu, Y., Feng, C., Lin, G., Wu, G., Li, D., & Wang, J. (2018). Innate differences and colostrum-induced alterations of jejunal mucosal proteins in piglets with intra-uterine growth restriction. British Journal of Nutrition, 119(7), 734-747. doi: 10.1017/S0007114518000375
Wu, S., Guo, W., Li, X., Liu, Y., Li, Y., Lei, X.,... Yang, X. (2019). Paternal chronic folate supplementation induced the transgenerational inheritance of acquired developmental and metabolic changes in chickens. Proceedings of the Royal Society B, 286(1910), 20191653. doi: 10.1098/rspb.2019.1653
Y de Vries, J., Pundir, S., Mckenzie, E., Keijer, J., & Kussmann, M. (2018). Maternal circulating vitamin status and colostrum vitamin composition in healthy lactating women A systematic approach. Nutrients, 10(6), 687. doi: 10.3390/nu10060687
Zhang, L., Zhang, L., Zeng, X., Zhou, L., Cao, G., & Yang, C. (2016). Effects of dietary supplementation of probiotic, Clostridium butyricum, on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli K88. Journal of Animal Science and Biotechnology, 7(1), 3. doi: 10.1186/s40104-016-0061-4
Downloads
Published
How to Cite
Issue
Section
License
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.