Otimização do óleo essencial de semente de limão na dieta para melhorar a composição química da silagem de alfafa e a degradabilidade in vitro

Autores

DOI:

https://doi.org/10.5433/1679-0359.2021v42n2p891

Palavras-chave:

Silagem de alfafa, Degradabilidade, Óleo essencial de semente de limão, Fermentação.

Resumo

Objetivo do experimento foi avaliar o efeito do óleo essencial de semente de limão na composição química e degradabilidade in vitro da silagem de alfafa. Os tratamentos foram silagem de alfafa sem aditivo (controle) ou tratada com 60 ml kg-1 MS de óleos essenciais de caroço de limão (LEO60), de óleos essenciais de semente de limão (LEO120) e misturas iguais (M60). Silagem de planta inteira de alfafa foi ensilada por 60 dias em tubos triplicados em escala de laboratório. Matéria seca, matéria orgânica, proteína bruta, fibra insolúvel em detergente ácido e neutro, carboidrato solúvel em água, pH foram medidos com 3 repetições pelo método de produção de gás in vitro. O conteúdo de matéria seca (MS) foi maior para LEO60 do que para o controle. Em comparação com o controle, a concentração de fibra em detergente neutro (FDN) diminuiu no LEO120. A adição de óleos essenciais e sua combinação à silagem diminuiu significativamente (p < 0,0001) o pH da silagem em comparação com a silagem não tratada aumentou de forma interessante para todas as silagens contendo óleo essencial em comparação com a silagem não tratada. A adição de caroço de limão essencial à silagem de alfafa diminuiu a taxa de desaparecimento da matéria orgânica e da matéria seca em todos os tratamentos em relação ao controle. O potencial de degradabilidade da silagem de alfafa aumentou nos tratamentos contendo óleo essencial de semente de limão (60 ml kg-1 MS), o que é significativamente diferente do controle. Em geral, os dados obtidos mostram o efeito positivo do óleo essencial de semente de limão na qualidade da silagem de alfafa e suas propriedades fermentativas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Maghsoud Besharati, University of Tabriz

University of Tabriz, Ahar Faculty of Agriculture and Natural Resources, Department of Animal Science, 51666, Tabriz, Iran.

Valiollah Palangi, Agricultural Faculty, Ataturk University

Department of Animal Science, Agricultural Faculty, Ataturk University, 25240, Erzurum, Turkey.

Masomeh Niazifar, University of Tabriz

University of Tabriz, Ahar Faculty of Agriculture and Natural Resources, Department of Animal Science, 51666, Tabriz, Iran.

Zabihollah Nemati, University of Tabriz

University of Tabriz, Ahar Faculty of Agriculture and Natural Resources, Department of Animal Science, 51666, Tabriz, Iran.

Referências

Abudunia, A. M., Hafidi, H., Algabr, M., Akachar, J., Almahbashi, H., Ramli, Y., & Khedid, K. (2017). Evaluation of essential oils for antimicrobial activity from some Moroccan aromatic plants medicinal. Journal of Materials and Environmental Science, 8(12), 4240-4245. http://www.jmaterenvironsci.com/

Adesogan, A. T., Krueger, N., Salawu, M. B., Dean, D. B., & Staples, C. R. (2004). The influence of treatment with dual purpose bacterial inoculants or soluble carbohydrates on the fermentation and aerobic stability of bermudagrass. Journal of Dairy Science, 87(10), 3407-3416. doi: 10.3168/jds.S0022-0302(04)73476-1

Aghdam, M. S., Luo, Z., Jannatizadeh, A., Sheikh-Assadi, M., Sharafi, Y., Farmani, B., & Razavi, F. (2019). Employing exogenous melatonin applying confers chilling tolerance in tomato fruits by upregulating ZAT2/6/12 giving rise to promoting endogenous polyamines, proline, and nitric oxide accumulation by triggering arginine pathway activity. Food Chemistry, 275(1), 549-556. doi: 10.1016/j.foodchem.2018.09.157

Association of Offical Analytic Chemists (2002). Official method of Analytic (vol. 1, 17nd ed.). Arlington, VA: AOAC.

Benchaar, C., McAllister, T. A., Petit, H. V., & Chouinard, P. Y. (2014). Whole flax seed and flax oil supplementation of dairy cows fed high-forage or high-concentrate diets: effects on digestion, ruminal fermentation characteristics, protozoal populations and milk fatty acid profile. Animal Feed Science Technology, 198, 117-29. doi: 10.1016/j.anifeedsci.2014.10.003

Besharati, M., & Niazifar, M. (2020). The effect of lemon seed essential oil on composition, chemical characteristics, and gas production parameters of alfalfa silage. Journal of Animal Science, 30(1), 93-104. doi: 10.22034/AS.2020.11018

Besharati, M., Palangi, V., Moaddab, M., Nemati, Z., Pliego, A. B., & Salem, A. Z. (2020). Influence of cinnamon essential oil and monensin on ruminal biogas kinetics of waste pomegranate seeds as a biofriendly agriculture environment. Waste and Biomass Valorization, (in press). doi: 10.1007/s12649-020-01167-2

Besharati, M., Palangi, V., Niazifar, M., & Nemati, Z. (2020). Comparison study of flaxseed, cinnamon and lemon seed essential oils additives on quality and fermentation characteristics of lucerne silage. Acta Agriculturae Slovenica, 2(424), 115. doi: 10.14720/aas.2020.115.2.1483

Besharati, M., Shafipour, N., & Nemati, Z. (2019). Effect of supplementation of alfalfa silage with Lactobacillus Buchneri additive, orange pulp and molasses on dry matter, crude protein and organic matter degradability by nylon bags. Research Animal Production, 10(23), 45-52. doi: 10.29252/rap.10.23.45

Bodas, R., Prieto, N., García-González, R., Andrés, S., Giráldez, F. J., & López, S. (2012). Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science Technology, 176(1-4), 78-93. doi:10.1016/j.anifeedsci.2012.07.010
Borchers, R. (1965). Proteolytic activity of rumen fluid in vitro. Journal of Animal Science, 24(4), 1033-1038. doi: 10.2527/jas1965.2441033x

Borreani, G., Tabacco, E., Schmidt, R. J., Holmes, B. J., & Muck, R. E. (2018). Silage review: factors affecting dry matter and quality losses in silages. Journal of Dairy Science, 101(5), 3952-3979. doi: 10.3168/jds.2017-13837

Borshchevskaya, L. N., Gordeeva, T. L., Kalinina, A. N., & Sineokii, S. P. (2016). Spectrophotometric determination of lactic acid. Journal of Analytical Chemistry, 71(8), 755-758. doi: 10.1134/S1061934816080037

Busquet, M., Calsamiglia, S., Ferret, A., Carro, M. D., & Kamel, C. (2005). Effect of garlic oil and four of its compounds on rumen microbial fermentation. Journal of Dairy Science, 88(12), 4393-4404. doi: 10.3168/jds.S0022-0302(05)73126-X

Chaves, A. V. (2012). Effects of cinnamon leaf, oregano and sweet orange essential oils on fermentation and aerobic stability of barley silage. Journal of Science Food and Agriculture, 92(4), 906-915. doi: 10.1002/jsfa.4669

Dubios, A., Giles, M. K. A., Hamilton, J. K., Ronerts, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(30), 350-356. doi: 10.1021/ac60111a017

Dunière, L., Sindou, J., Chaucheyras-Durand, F., Chevallier, I., & Thévenot-Sergentet, D. (2013). Silage processing and strategies to prevent persistence of undesirable microorganisms. Animal Feed Science and Technology, 182(1-4), 1-15. doi: 10.1016/j.anifeedsci.2013.04.006

Duodu, K. G., Taylor, J. R. N., Belton, P. S., & Hamaker, B. R. (2003). Factors affecting sorghum protein digestibility. Journal of Cereal Science, 38(2), 117-31. doi: 10.1016/S0733-5210(03)00016-X

Elcoso, G., Zweifel, B., & Bach, A. (2019). Effects of a blend of essential oils on milk yield and feed efficiency of lactating dairy cows. Applied Animal Science, 35(3), 304-311. doi: 10.15232/aas.2018-01825

Foskolos, A., Cavini, S., Ferret, A., & Calsamiglia, S. (2016). Effects of essential oil compounds addition on ryegrass silage protein degradation. Canadian Journal of Animal Science, 96(2), 100-3. doi: 10.1139/cjas-2015-0025
Garcia, F., Colombatto, D., Brunetti, M. A., Martínez, M. J., Moreno, M. V., Scorcione Turcato, M., & Martínez Ferrer, J. (2020). The reduction of methane production in the in vitro ruminal fermentation of different substrates is linked with the chemical composition of the essential oil. Animals, 10(5), 786. doi: 10.3390/ani10050786

Geraci, A., Di Stefano, V., Di Martino, E., Schillaci, D., & Schicchi, R. (2017). Essential oil components of orange peels and antimicrobial activity. Natural Product Research, 31(6), 653-659. doi: 10.1080/14786419.2016.1219860

Gozalpur, V., Besharati, M., Nemati, Z., & Abdi, E. (2017). Effect of commercial essential oil (ESSENTIAL) on the characteristics of silage alfalfa with apple pulp. Proceeding of the International and National Conference on Organic vs. Conventional Agriculture, Ardabil, Iran, 1, 5. https://civilica.com/doc/932840

Hodaj-Çeliku, E., Tsiftsoglou, O., Shuka, L., Abazi, S., Hadjipavlou-Litina, D., & Lazari, D. (2017). Antioxidant activity and chemical composition of essential oils of some aromatic and medicinal plants from Albania. Natural Product Communications, 12(5), 1934578X1701200525. doi: 10.1177/1934578X1701200525

Hodjatpanah-Montazeri, M., Danesh Mesgaran, M., & Vakili, A. (2016). Effect of Essential Oils of Various Plants as Microbial Modifier to Alter Corn Silage Fermentation and in vitro Methane Production. Iranian Journal of Applied Animal Science, 6(2), 269-276. http://ijas.iaurasht.ac.ir/article_522780.html

Hoelzer, K., Bielke, L., Blake, D. P., Cox, E., Cutting, S. M., Devriendt, B., & Metzner, M. (2018). Vaccines as alternatives to antibiotics for food producing animals. Part 1: challenges and needs. Veterinary Research, 49(1), 64. doi: 10.1186/s13567-018-0560-8

Joch, M., Kudrna, V., Hakl, J., Božik, M., Homolka, P., Illek, J., & Výborná, A. (2019). In vitro and in vivo potential of a blend of essential oil compounds to improve rumen fermentation and performance of dairy cows. Animal Feed Science and Technology, 251, 176-186. doi: 10.1016/j.anifeedsci.2019.03.009

Kolling, G. J., Stivanin, S. C. B., Gabbi, A. M., Machado, F. S., Ferreira, A. L., Campos, M. M., & Fischer, V. (2018). Performance and methane emissions in dairy cows fed oregano and green tea extracts as feed additives. Journal of Dairy Science, 101(5), 4221-4234. doi: 10.3168/jds.2017-13841

Kouazounde, J. B., Jin, L., Assogba, F. M., Ayedoun, M. A., Wang, Y., Beauchemin, K. A., & Gbenou, J. D. (2015). Effects of essential oils from medicinal plants acclimated to Benin on in vitro ruminal fermentation of Andropogon gayanus grass. Journal of the Science of Food and Agriculture, 95(5), 1031-1038. doi: 10.1002/jsfa.6785

Lemus, C., Bonilla, J., Plasencia, A., & Ly, J. (2012). Chemical characteristics of silages of mango (Mangifera indica L.) by products for animal feeding. Cuban Journal of Agricultural Science, 46(4). https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Chemical+characteristics+of+silages+of+mango+%28Mangifera+indica+L.%29+by+products+for+animal+feeding&btnG=

Lynch, J. P., Prema, D., Van Hamme, J. D., Church, J. S., & Beauchemin, K. A. (2014). Fiber degradability, chemical composition and conservation characteristics of alfalfa haylage ensiled with exogenous fibrolytic enzymes and a ferulic acid esterase-producing inoculant. Canadian Journal of Animal Science, 94(4), 697-704. doi: 10.4141/cjas-2014-086

Macheboeuf, D., Morgavi, D. P., Papon, Y., Mousset, J. L., & Arturo-Schaan, M. (2008). Dose–response effects of essential oils on in vitro fermentation activity of the rumen microbial population. Animal Feed Science and Technology, 145(1-4), 335-350. doi: 10.1016/j.anifeedsci.2007.05.044

Makkar H.P. (2010) In Vitro Screening of Feed Resources for Efficiency of Microbial Protein Synthesis. In: Vercoe P., Makkar H., Schlink A. (eds) In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies. Springer, Dordrecht. doi: 10.1007/978-90-481-3297-3_7

Markham, R. (1942). A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochemical Journal, 36(10-12), 790-791. doi: 10.1042/bj0360790

McDonald, P., Henderson, A. R., & Heron, S. J. E. (1991). The biochemistry of silage. Marlow, UK: Chalcombe Publications.340pp. https://www.cabdirect.org/cabdirect/abstract/19930759161

Mcdougall, E. I. (1948). The composition and output of sheep’s saliva. Biochemical Journal, 43(1), 99-109. doi: 10.1042/bj0430099

Moselhy, M. A., Borba, J. P., & Borba, A. E. (2015). Improving the nutritive value, in vitro digestibility and aerobic stability of Hedychium gardnerianum silage through application of additives at ensiling time. Animal Feed Science and Technology, 206, 8-18. doi: 10.1016/j.anifeedsci.2015.05.001

Oladokun, S., & Adewole, D. I. (2020). In ovo delivery of bioactive substances: an alternative to the use of antibiotic growth promoters in poultry production—a review. Journal of Applied Poultry Research, 29(3), 744-763. doi: 10.1016/j.japr.2020.06.002

Palangi, V., & Besharati, M. (2020). Validation of in situ disappearance curves utilizing mathematical models for incubating fish meal and cottonseed meal. Semina: Ciências Agrárias, 41(6Supl2), 3391-3396. doi: 10.5433/1679-0359.2020v41n6Supl2p3391

Palangi, V., Taghizadeh, A., & Sadeghzadeh, M. K. (2013). Determine of nutritive value of dried citrus pulp various using in situ and gas production techniques. Journal of Biodiversity and Environmental Sciences, 3(6), 8-16. https://www.researchgate.net/profile/Valiollah_Palangi2/publication/324561276_Determine_of_nutritive_value_of_dried_citrus_pulp_various_using_in_situ_and_gas_production_techniques/links/5ad59393a6fdcc293580adb9/Determine-of-nutritive-value-of-dried-citrus-pulp-various-using-in-situ-and-gas-production-techniques.pdf

Pour, H. A., Naserian, A. A., Vakili, A. R., & Tahmasbi, A. M. (2017). Effect of essential plant oil used as an additive to alter silage fermentation in ruminant by in vitro. Biosciences Biotechnology Research Asia, 14(1), 145-152. doi: 10.13005/bbra/2429

Rafique, S., Hassan, S. M., Mughal, S. S., Hassan, S. K., & Shabbir, N. (2020). Biological attributes of lemon: a review. Journal of Addiction Medicine and Therapeutic Science, 6(1), 30-34. doi: 10.17352/2455-3484.000034

Sardrodi, A. F., Soleimani, A., Kheiry, A., & Zibareresht, R. (2017). Essential oil composition of Achillea aucheri Boiss at different growing altitudes in Damavand, Iran. Journal of Agriculture, Science and Technology, 19(2), 357-364. http://jast.modares.ac.ir/article-23-7980-en.html

Sayyah, M., Moaied, S., & Kamalinejad, M. (2005). Anticonvulsant activity of Heracleum persicum seed. Journal of Ethnopharmacology, 98(1-2), 209-211.

Sheikh, A., & Jain, P. (2016). A thorough study of zinc ferrite nanoparticles with reference to green synthesis. International Journal of Nanomedicine and Nanosurgery, 2(3), 1-8. doi: 10.16966/2470-3206.115

Silva, V. P., Pereira, O. G., Leandro, E. S., Silva, T. C. da, Ribeiro, K. G., & Mantovani, H. C. (2016). Effects of lactic acid bacteria with bacteriocinogenic potential on the fermentation profile and chemical composition of alfalfa silage in tropical conditions. Journal of Dairy Science, 99(3), 1895-1902. doi: 10.3168/jds.2015-9792

Simitzis, P. E., Deligeorgis, S. G., Bizelis, J. A., Dardamani, A., Theodosiou, I., & Fegeros, K. (2008). Effect of dietary oregano oil supplementation on lamb meat characteristics. Meat Science, 79(2), 217-223. doi: 10.1016/j.meatsci.2007.09.005

Triantafyllidis, V., Zotos, A., Kosma, C., & Kokkotos, E. (2020). Environmental implications from long-term citrus cultivation and wide use of cu fungicides in mediterranean soils. Water, Air, & Soil Pollution, 231(238), 1-17. doi: 10.1007/s11270-020-04577-z

Turan, A., & Önenç, S. S. (2018). Effect of cumin essential oil usage on fermentation quality, aerobic stability and in vitro digestibility of alfalfa silage. Asian-Australasian Journal of Animal Science, 31(8), 1252. doi: 10.5713/ajas.17.0834

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583. doi: 10.3168/jds.S0022-0302(91)78551-2

Vasconcelos, N. G., Croda, J., & Simionatto, S. (2018). Antibacterial mechanisms of cinnamon and its constituents: a review. Microbial Pathogenesis, 120, 198-203. doi: 10.1016/j.micpath.2018.04.036

Vergis, J., Gokulakrishnan, P., Agarwal, R. K., & Kumar, A. (2015). Essential oils as natural food antimicrobial agents: a review. Critical Reviews in Food Science and Nutrition, 55(10), 1320-1323. doi: 10.1080/10408398.2012.692127

Youcef-Ettoumi, K., Zouambia, Y., & Moulai-Mostefa, N. (2020). Chemical composition, antimicrobial and antioxidant activities of Algerian Citrus sinensis essential oil extracted by hydrodistillation assisted by electromagnetic induction heating. Journal of Food Science and Technology, (in press), 1-7. doi: 10.1007/s13197-020-04808-5

Downloads

Publicado

2021-02-24

Como Citar

Besharati, M., Palangi, V., Niazifar, M., & Nemati, Z. (2021). Otimização do óleo essencial de semente de limão na dieta para melhorar a composição química da silagem de alfafa e a degradabilidade in vitro. Semina: Ciências Agrárias, 42(2), 891–906. https://doi.org/10.5433/1679-0359.2021v42n2p891

Edição

Seção

Artigos

Artigos Semelhantes

<< < 1 2 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.