Aprimoramento de algumas características fisiológicas, morfológicas e bioquímicas essenciais de melancia induzidas pelo fungo Trichoderma harzianum

Autores

DOI:

https://doi.org/10.5433/1679-0359.2020v41n5supl1p2047

Palavras-chave:

Citrullus lanatus, Teor de clorofila, Crescimento e qualidade, Atividade fotossintética.

Resumo

Um estudo em vasos foi realizado em casa de vegetação para verificar a possibilidade do uso de Trichoderma harzianum para melhorar o crescimento, a produção e a qualidade da melancia ‘Sugar baby’ (Citrullus lanatus). Para tanto, foram utilizados meios de crescimento vegetal inoculado com T. harzianum a 1 × 104 ufc, 1,25 × 104 ufc e 1,50 × 104 ufc, respectivamente, enquanto o meio não inoculado com fungos foi utilizado como tratamento controle. O meio de crescimento das plantas inoculado com maior concentração (1,50 × 104 ufc) de T. harzianum aumentou significativamente o comprimento da raiz e da parte aérea das plantas e promoveu o florescimento precoce. Os maiores valores de peso fresco e seco da planta, área foliar, condutância estomática, taxa de transpiração, taxa líquida de fotossíntese e número de frutos por planta de melancia foram obtidos com 1,50 × 104 ufc. No entanto, os níveis de T. harzianum de 1,50 × 104 ufc e 1,25 × 104 cfu produziram resultados estatisticamente semelhantes para o teor de carboidratos, sólidos solúveis totais, teor de vitamina A e ?-caroteno de melancia. Observou-se que as plantas cultivadas em meio de crescimento inoculado com T. harzianum têm relação direta com o crescimento e a qualidade da melancia. Comparado a todos os níveis testados, o nível mais alto de T. harzianum 1,5 × 104 ufc é o mais eficaz para melhorar o crescimento, o rendimento e a qualidade do genótipo da melancia ‘Sugar baby’.

Downloads

Não há dados estatísticos.

Biografia do Autor

Hasnain Waheed, College of Agriculture, University of Sargodha

Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan.

Muhammad Awais Khan, College of Agriculture, University of Sargodha

Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha, Pakistan.

Hafiz Muhammad Tayyab Khan, College of Agriculture, University of Sargodha

Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha, Pakistan.

Muhammad Mansoor Javaid, College of Agriculture, University of Sargodha

Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan.

Faiz Ur Rahman, Chinese Academy of Agricultural Sciences

Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

Muhammad Muzammal Aslam, Chinese Academy of Agricultural Sciences

Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

Referências

Abdel-Monaim, M. F., Abdel-Gaid, M. A., Zayan, S. A., & Nassef, D. M. T. (2014). Enhancement of growth parameters and yield components in eggplant using antagonism of Trichoderma spp. against Fusarium wilt disease. International Journal of Phytopathology, 3(1), 33-40. doi: 10.33687/phytopath.003.01. 0510

Akter, A., Ali, E., Islam M., Karim, R., & Razzaque, A. (2007). Effect of GA3 on growth and yield of mustard. International Journal of Sustainable Crop Production, 2(2), 16-20. Retrieved from https://www. semanticscholar. org/paper/Effect-of-GA3-on-growth-and-yield-of-mustard.-Akt

Altomare, C., Norvell, W. A., Bjorkman, T., & Harman, G. E. (1999). Solubilization of phosphates and micronutrients by plant growth promoting and biocontrol fungus Trichoderma harzianum strain 1295-22. Applied and Environmental Microbiology, 65(7), 2926-2933. doi: 10.1128/AEM.65.7.2926-2933. 1999

Arnold, A. E., Maynard, Z., & Gilbert, G. S. (2001). Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycological Research, 105(12), 1502-1507. doi: 10.1017/S0 9537 56201004956

Azarmi, R., Hajieghrari, B., & Giglou, A. (2011). Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. African Journal of Biotechnology, 10(31), 5850-5855. doi: 10.5897/ AJB10.1600

Bailey, B. A., Bae, H., Strem, M. D., Roberts, D. P., Thomas, S. E., Crozier, J.,… Holmes, K. A. (2006). Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta, 224(6), 1449-1464. doi: 10.1007/s00425-006-0314-0

Contreras-Cornejo, H. A., Macías-Rodríguez, L., Cortés-Penagos, C., & López-Bucio, J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, 149(3), 1579-1592. doi: 10.1104/pp.108.130369

Ernst, M., Mendgen, K. W., & Wirsel, S. G. R. (2003). Endophytic fungal mutualists: seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms. Molecular Plant-Microbe Interactions, 16(7), 580-587. doi: 10.1094/MPMI.2003.16.7.580

Food and Agriculture Organization (2018). FAOSTAT statistics database. Retrieved from http://www.fao. org

Guner, N., Wehner, T. C., & Pitrat, M. (2008). Overview of potyvirus resistance in watermelon. In: M. Pitrat (Ed.), Cucurbitaceae 2008, Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Avignon, France, pp. 445.

Haggag, W. M. (2010). Role of entophytic microorganisms in biocontrol of plant diseases. Life Science Journal, 7(2), 57-62. doi: 10.7537/marslsj070210.11

Hao, W., Li, H., Hu, M., Yang, L., & Rizwan-ul-Haq, M. (2011). Integrated control of citrus green and blue mold and sour rot by Bacillus amyloliquefaciens in combination with tea saponin. Postharvest Biology and Technology, 59(3), 316-323. doi: 10.1016/j.postharvbio.2010.10.002

Harman, G. E. (2000). Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease, 84(4), 377-393. doi: 10.1094/PDIS.2000.84.4.377

Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2), 190-194. doi: Harman, G. E. (2006). Overview of Mechanisms and Uses ofTrichodermaspp. Phytopathology, 96(2), 19-194. doi: 10.1094/phyto-96-0190

Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma spp. opportunistic, avirulent plant symbionts. Nature Reviews microbiology, 2(1), 43-56. doi: 10.1038/nrmicro797

Higgins, K. L., Arnold, A. E., Miadlikowska, J., Sarvate, S. D., & Lutzoni, F. (2007). Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Molecular Phylogenetic and Evolution, 42(2), 543-555. doi: 10.1016/j.ympev.2006.07. 012

Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87(1), 4-10. doi: 10.1094/PDIS. 2003.87.1.4

Khan, A. L., Hussain, J., Al-Harrasi, A., Al-Rawahi, A., & Le, I. (2013). Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Critical Reviews in Biotechnology. 35(1), 62-74. doi: 10. 3109/07388551.2013.800018

Kogel, K. H., Franken, P., & Hückelhoven, R. (2006). Endophyte or parasite-what decides? Current Opinion in Plant Biology, 9(4), 58-363. doi: 10.1016/j.pbi.2006.05.001

Kusari, S., & Spiteller, M. (2011). Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Natural Product Reports, 28(7), 1203-1207. doi: 10.1039/c1np00030f

Lindsey, D. L., & Baker, R. (1967). Effect of certain fungi on dwarf tomatoes grown under gnotobiotic conditions. Phytopathology, 57(11), 1262-1263. Retrieved from https://scholar.google.com/scholar?hl= en&as_sdt=0%2C5&q=Effect+of+certain+fungi+on+dwarf+tomatoes+grown+under+gnotobiotic+conditions&btnG=

Liu, B., Glenn, D., & Buckley, K. (2008). Trichoderma communities in soils from organic, sustainable, and conventional farms, and their relation with southern blight of tomato. Soil Biology and Biochemistry, 40(5), 1124-1136. doi: 10.1016/j.soilbio.2007.12.005

Mazhabi, M., Nemati, H., Rouhani, H., Tehranifar, A., Moghadam, E. M., Kaveh, H., & Rezaee, A. (2011). The effect of Trichoderma on polianthes qualitative and quantitative properties. The Journal of Animal and Plant Sciences, 21(3), 617-621. Retrieved from http://www.thejaps.org.pk/docs/21-3/28.pdf

Mwangi, M. W., Monda, E. O., Okoth, S. A., & Jefwa, J. M. (2011). Inoculation of tomato seedlings with Trichoderma harzianum and Arbuscular Mycorrhizal Fungi and their effect on growth and control of wilt in tomato seedlings. Brazilian Journal of Microbiology, 42(2), 508-513. doi: 10.1590/S1517-83822011000200015

Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4(1), 148. doi: 10.3389/fpubh.2016.00148

Nzanza, B., Marais, D., & Soundy, P. (2011). Tomato (Solanum lycopersicum L.) seedlings growth and development as influenced by Trichoderma harzianum and arbuscular mycorrhizal fungi. African Journal of Microbiology, 5(4), 425-431. doi: 10.5897/AJMR10.870

Nzanza, B., Marais, D., & Soundy, P. (2012). Response of tomato (Solanum lycopersicum L.) to nursery inoculation with Trichoderma harzianum and arbuscular mycorrhizal fungi under field conditions. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 62(3), 209-215. doi: 10.1080/09064710. 2011.598544

Omacini, M., Chaneton, E. J., Ghersa, C. M., & Mueller, C. B. (2001). Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature, 409(6816), 78-81. doi: 10.1038/35051070

Ozbay, N., & Newman, E. S. (2004). Effect of T. harzianum strains to colonize tomato roots and improve transplant growth. Pakistan Journal of Biological Sciences, 7(2), 253-257. doi: 10.3923/pjbs.2004. 253. 257

Palou, L., Smilanick, J., & Droby, S. (2008). Alternatives to conventional fungicides for the control of citrus postharvest green and blue molds. Stewart Postharvest Review, 4(2), 1-16. doi: 10.2212/spr.2008.2.2

Redman, R. S., Seehan, K. B., Stout, R. G., Rodriquez, R. J., & Henson, J. M. (2002). Thermotolerance generated by plant/fungal symbiosis. Science, 298(5598), 1581-1587. doi: 10.1126/science.1072191

Saleem, B. A., Malik, A. U., & Farooq, M. (2007). Effect of exogenous growth regulators application on June fruit drop and fruit quality in Citrus sinensis cv. Blood red. Pakistan Journal of Agricultural Science, 44(2), 1-6. Retrieved from https://pakjas.com.pk/papers/328.pdf

Sánchez-Torres, P., & Tuset, J. J. (2011). Molecular insights into fungicide resistance in sensitive and resistant Penicillium digitatum strains infecting citrus. Postharvest Biology and Technology, 59(2), 159-165. doi: 10.1016/j.postharvbio.2010.08.017

Schulz, B., & Boyle, C. (2005). The endophytic continuum. Mycological Research, 109(6), 661-686. doi: 10.1017/S095375620500273X

Sharma, N., Sharma, S., & Prabha, B. (2012). Postharvest biocontrol-new concepts and application. Crop stress and its management: perspectives and strategies (pp. 497-515). Dordrecht: Springer.

Shiomi, H. F., Silvia, H. S. A., Melo, I. S. de, Nunes, F. V., & Bettiol, W. (2006). Bioprospecting endophytic Bacteria for biological control of coffee leaf rust. Scientia Agricola, 63(1), 32-39. doi: 10.1590/S0103-90162006000100006

Shoresh, M., & Harman, G. (2008). The relationship between increased growth and resistance induced in plants by root colonizing microbes. Plant Signaling and Behavior, 3(9), 737-739. doi: 10.4161/psb.3.9. 6605

Singh, K. S., & Khurma, U. R. (2007). Susceptibility of six tomato cultivars to the root-knot nematode, Meloidogyne incognita. The South Pacific Journal of Natural Science, 25(1), 73-77. doi: 10.1071/ SP07013

Southgate, D. A. (1991). Determination of food carbohydrates (2a. ed). Elsevier.

Stancher, B., & Zonta, F. (1982). High-performance liquid chromatographic determination of carotene and vitamin A and its geometric isomers in foods: applications of cheese analysis. Journal of Chromatography, 238(1), 217-225. doi: 10.1016/S0021-9673(00)82728-4

Steel, R. G. D., Torrie, J. H., & Dickey, D. (1997). Principles and procedures of statistics: a biometrical approach (3nd ed.). New York: McGraw Hill Book Co. Inc.

Suryanarayanan, T. S., Venkatesan, G., & Murali, T. S. (2003). Endophytic fungal communities in leaves of tropical forest trees: diversity and distribution patterns. Current Science, 85(1), 489-493. doi: 10.1590/S0102-33062011000400008

Yedidia, I., Srivastva, A. K., Kapulnik, Y., & Chet, I. (2001). Effects of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, 235(2), 235-242. doi: 10.1023/A:1011990013955

Youssef, K., & Hussien, A. (2020). Electrolysed water and salt solutions can reduce green and blue molds while maintain the quality properties of ‘Valencia’late oranges. Postharvest Biology and Technology, 159(1), 111025. doi: 10.1016/j.postharvbio.2019.111025

Downloads

Publicado

2020-08-07

Como Citar

Waheed, H., Khan, M. A., Khan, H. M. T., Javaid, M. M., Rahman, F. U., & Aslam, M. M. (2020). Aprimoramento de algumas características fisiológicas, morfológicas e bioquímicas essenciais de melancia induzidas pelo fungo Trichoderma harzianum. Semina: Ciências Agrárias, 41(5supl1), 2047–2060. https://doi.org/10.5433/1679-0359.2020v41n5supl1p2047

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

<< < 1 2 3 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.