Carbonatação de concretos contendo cimento LC³ com diferentes materiais suplementares

Carbonatação de concretos contendo cimento LC³ com diferentes materiais suplementares

Autores

DOI:

https://doi.org/10.5433/1679-0375.2022v43n2p161

Palavras-chave:

concreto, LC³-50, metacaolim, materiais cimentícios suplementares, clínquer

Resumo

Devido ao processo de clinquerização durante a produção do cimento Portland, grandes quantidades de CO2 são emitidas, aumentando os efeitos relacionados às mudanças climáticas (aproximadamente 5-10% das emissões globais de CO2 são provenientes da produção de cimento), consequentemente, a busca por alternativas para mitigar esses altas emissões são necessárias. O uso de materiais cimentícios suplementares (SCM) para substituição parcial do clínquer/cimento Portand tem sido objeto de diversas pesquisas, incluindo o uso de cimentos LC3 (Limestone Calcined Clay Cements), onde até 50% do clínquer Portland pode
ser substituído, entretanto, a indústria cimenteira já utilizou outros materiais cimentícios complementares com atividades pozolânicas em cimentos comerciais. Nesse sentido, este trabalho avalia o desempenho de concretos contendo misturas LC3 com a presença de diferentes SCM (sílica ativa, cinza volante, cinza de bagaço de cana e cinza de caroço de açaí) quanto a questões de durabilidade por carbonatação. Os resultados mostraram que todos os concretos com LC3 apresentaram frentes de carbonatação maiores em relação ao concreto de referência, com cimento Portland, devido à menor disponibilidade de cálcio para reagir com o CO2 que penetra nos poros do concreto, por isso a adoção de procedimentos de cura e revestimentos são recomendados.

Downloads

Não há dados estatísticos.

Biografia do Autor

Carlos Eduardo Tino Balestra, Universidade Tecnológica Federal do Paraná - UTFPr

Prof. Dr., Depto. Engenharia Civil, UTFPR, Toledo, PR

Gustavo Savaris, Universidade Tecnológica Federal do Paraná - UTFPr

Prof. Dr., Depto. Engenharia Civil, UTFPR, Toledo, PR

Alberto Yoshihiro Nakano, Universidade Federal do Paraná - UFPr

Prof. Dr., Depto. de Engenharia Eletrônica, UTFPR, Toledo, PR

Ricardo Schneider, Universidade Tecnológica Federal do Paraná - UTFPr

Prof. Dr., Depto. de Processos Químicos e Biotecnológicos, UTFPR, Toledo, PR

Referências

ALMENARES, R. S.; VIZCAÍNO, L. M.; DAMAS, S.; MATHIEU, A.; ALUJAS, A.; MARTIRENA, F. Industrial calcination of kaolinitic clays to make reactive pozzolans. Case studies in Construction Materials [s. l.], v. 6, p. 225-232, 2017. DOI: https://doi.org/10.1016/j.cscm.2017.03.005. DOI: https://doi.org/10.1016/j.cscm.2017.03.005

ANTONI, M.; ROSSEN, J.; MARTIRENA, F.; SCRIVENER, K. Cement substitution by a combination of metakaolin and limestone. Cement and Concrete Research, Oxford, v. 42, p. 1579-1589, 2012. DOI: https://doi.org/10.1016/j.cemconres.2012.09.006. DOI: https://doi.org/10.1016/j.cemconres.2012.09.006

APOSTOLOPOULOS, C. A.; DEMIS, S.; PAPADAKIS, V. G. Chloride-induced corrosion of steel reinforcement - mechanical performance and pit depth analysis. Construction and Building Materials, Guildford, v. 38, p. 139-146, 2013. DOI: https://doi.org/10.1016/j.conbuildmat.2012.07.087. DOI: https://doi.org/10.1016/j.conbuildmat.2012.07.087

AVET, F.; SNELLINGS, R.; DIAZ, A. A.; HAHA, M. B.; SCRIVENER, K. Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cement and Concrete Research, Oxford, v. 85, p. 1-11, 2016. DOI: http://dx.doi.org/10.1016/j.cemconres.2016.02.015. DOI: https://doi.org/10.1016/j.cemconres.2016.02.015

BALESTRA, C. E. T.; LIMA, M. G.; SILVA, A. R.; MEDEIROS-JUNIOR, R. A. Corrosion degree effect on nominal and effective strengths of naturally corroded reinforcement. Journal of Materials in Civil Engineering, [Stevenage], v. 28, n. 10, p. 1-9, 2016. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001599. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001599

BALESTRA, C. E. T.; NAKANO, A. Y.; SAVARIS, G.; MEDEIROS-JUNIOR, R. A. Reinforcement corrosion risk of marine concrete structures evaluated through electrical resistivity: Proposal of parameters based on field structures. Ocean Engineering, [Glasgow], v. 187, p. 1-13, 2019. DOI: https://doi.org/10.1016/j.oceaneng.2019.106167. DOI: https://doi.org/10.1016/j.oceaneng.2019.106167

BEM, D. H.; LIMA, D. P. B.; MEDEIROS-JUNIOR, R.A. Effect of chemical admixtures on concrete´s electrical resistivity. International Journal of Building Pathology and Adaptation, Bingley, v. 36, n. 2, p. 174-187,2018. DOI: http://doi.org/10.1108/IJBPA-11-2017-0058. DOI: https://doi.org/10.1108/IJBPA-11-2017-0058

BERRIEL, S. S.; FAVIER, A.; DOMÍNGUEZ, E. R.;MACHADO, I. R. S.; HEIERLI, U.; SCRIVENER, K.; HERNÁNDEZ, F. M.; HABERT, G. Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba. Journal of Cleaner Production, Oxford, v. 124, p. 361-369, 2016. DOI: http://dx.doi.org/10.1016/j.jclepro.2016.02.125. DOI: https://doi.org/10.1016/j.jclepro.2016.02.125

BUCHER, R.; DIEDERICH, P.; ESCADEILLAS, G. CYR, M. Service life of metakaolin-based concrete exposed to carbonation - Comparison with blended cement containing fly ash, blast furnance slag and limestone filler. Cement and Concrete Research, Oxford, v. 99, p. 18-29, 2017. DOI: http://doi.org/10.1016/j.cemconres.2017.04.013. DOI: https://doi.org/10.1016/j.cemconres.2017.04.013

CHEN, C. T.; CHANG, J. J.; YEIH, W. C. The effects of specimen parameters on the resistivity of concrete. Construction and Building Materials, Guildford, v. 71, n. 30, p. 35-43, 2014. DOI: https://doi.org/10.1016/j.conbuildmat.2014.08.009. DOI: https://doi.org/10.1016/j.conbuildmat.2014.08.009

CEB - COMITÉ EURO-INTERNATIONAL DU BÉTON. Durable concrete structures. 2. nd. Lausanne: Telford Services, 1992. (Bulletin D' Information, n. 183).

COSTA JUNIOR, M.P.; PINHEIRO, S.M.M. Durabilidade de concreto armado sob condições de carregamento e cura em ambiente marinho. Semina: Ciências Exatas e Tecnológicas, Londrina, , n. 40, v. 2, p. 145-153, 2019. DOI: https://doi.org/10.5433/1679-0375.2019v40n2p145. DOI: https://doi.org/10.5433/1679-0375.2019v40n2p145

DHANDAPANI, Y.; SANTHANAM, M. Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance. Cement and Concrete Composites, Amsterdam, v. 84, p. 36-47, 2017. DOI: http://dx.doi.org/10.1016/j.cemconcomp.2017.08.012. DOI: https://doi.org/10.1016/j.cemconcomp.2017.08.012

DU, H.; PANG, S.D. High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute. Construction and Building Materials, Guildford, v. 264, n. 20, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120152. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120152

FERREIRO, S.; HERFORT, D.; DAMTOFT, J. S. Effect of raw clay type, fineness, water-to-cement ratio and fly ash addition on workability and strength performance of calcined clay - Limestone Portland cements. Cement and Concrete Research, Oxford, v. 101, p. 1-12, 2017. DOI: https://doi.org/10.1016/j.cemconres.2017.08.003. DOI: https://doi.org/10.1016/j.cemconres.2017.08.003

HAN, S. H.; PARK, W. S.; YANG, E. I. Evaluation of concrete durability due to carbonation in harbor concrete structures. Construction and Building Materials, Guildford, v. 48, p. 1045-1049, 2013. DOI: http://doi.org/10.1016/j.conbuildmat.2013.07.057. DOI: https://doi.org/10.1016/j.conbuildmat.2013.07.057

HORNBOSTEL, K.; LARSEN, C. K.; GEIKER, M. R. Relationship between concrete resistivity and corrosion rate: a literature review. Cement and Concrete Composites, Amsterdam, v. 39, p. 60-72, 2013. DOI: https://doi.org/10.1016/j.cemconcomp.2013.03.019. DOI: https://doi.org/10.1016/j.cemconcomp.2013.03.019

HOU, T. C.; NGUYEN, V. K.; SU, Y. M.; CHEN, Y. R.; CHEN, P. J. Effects of coarse aggregates on the electrical resistivity of Portland cement concrete. Construction and Building Materials, Guildford, v. 133, n. 15, p. 397-408, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.044. DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.044

KHAN, I.; FRANÇOIS, R.; CASTEL, A. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams. Cement and Concrete Research, Oxford, v. 56, p. 84-96, 2014. DOI: https://doi.org/10.1016/j.cemconres.2013.11.006. DOI: https://doi.org/10.1016/j.cemconres.2013.11.006

KRISHNAN, S.; BISHNOI, S. A numerical approach for designing composite cements with calcined clay and limestone. Cement and Concrete Research, Oxford, v. 138, 2020. DOI: https://doi.org/10.1016/j.cemconres.2020.106232. DOI: https://doi.org/10.1016/j.cemconres.2020.106232

MEDEIROS-JUNIOR, R. A.; LIMA, M. G. Electrical resistivity of unsaturated concrete using different types of cement. Construction and Building Materials, Guildford, v. 107, p. 11-16, 2016. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.168. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.168

MEHTA, P. K.; MONTEIRO, P. J. M. Concrete: Microstructure, properties and Materials. 3.rd ed. New York: Mc-Graw Hill, 2006.

MURAKAMI, F.F.E.; FERREIRA, E.O.; BALESTRA, C.E.T.; SAVARIS, G. Tensile strength of corroded steel bars. Semina: Ciências Exatas e Tecnológicas. Londrina, v. 42, n.1, p. 103-112, 2021. DOI: https://doi.org/10.5433/1679-0375.2021v42n1p103. DOI: https://doi.org/10.5433/1679-0375.2021v42n1p103

NAIR, N.; HANEEFA, K. M.; SANTHANAM, M.; GETTU, R. A. study on fresh properties of limestone calcined clay blended cementitious systems. Construction and Building Materials, Guildford, v. 254, n. 10, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119326. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119326

NEVILLE, A. M. Properties of Concrete. 5.th ed. New York: Prentice Hall, 2012.

PAUL, S. C.; PANDA, B.; HUANG, Y.; GARG, A.; PENG, X. An empirical model design for evaluation and estimation of carbonation depth in concrete. Measurement, London, v. 124, p. 205-210, 2018. DOI: http://doi.org/10.1016/j.measurement.2018.04.033. DOI: https://doi.org/10.1016/j.measurement.2018.04.033

REHMAN, S.; AL-HADHRAMI, L. M. Web-based national corrosion cost inventory system for Saudi Arabia. Anti Corrosion Methods and Materials, Bingley, v. 61, n. 2, p. 77-92, 2014. DOI: https://doi.org/10.1108/ACMM-04-2013-1254. DOI: https://doi.org/10.1108/ACMM-04-2013-1254

RILEM RECOMMENDATIONS. CPC-18 measurement of hardened concrete carbonation depth. Materials and Structures, Dordrecht, v. 21, p. 453-455, 1988. DOI: https://doi.org/10.1007/BF02472327

RODRIGUEZ, C.; TOBON, J. I. Influence of calcined clay/limestone, sulfate and clinker proportions on cement performance. Construction and Building Materials, Guildford, v. 251, n. 10, p. 1-8, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119050. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119050

SCRIVENER, K.; AVET, F.; MARAQHECHI, H.; ZUNINO, F.; STON, J.; HANPONGPUN, W.; FAVIER, A. Impacting factors and properties of limestone calcined clay cements (LC³). Green Materials, Westminster, v. 7, n. 1, p. 3-14, 2019. DOI: https://doi.org/10.1680/jgrma.18.00029. DOI: https://doi.org/10.1680/jgrma.18.00029

SCRIVENER, K.; MARTIRENA, F.; BISHNOI, S.; MAITY, S. Calcined clay limestone cements (LC³). Cement and Concrete Research, Oxford, v. 114, p. 49-56, 2018. DOI: https://doi.org/10.1016/j.cemconres.2017.08.017. DOI: https://doi.org/10.1016/j.cemconres.2017.08.017

SENGUL, O. Use of electrical resistivity as an indicator for durability. Construction and Building Materials, Guildford, v. 73, n. 30, p. 434-441, 2014. DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.077. DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.077

SHI, C.; HE, T.; ZHANG, G.; WANG, X.; HU, Y. Effects of superplasticizers on carbonation resistance of concrete. Construction and Building Materials, Guildford, v. 108, n. 1, p. 48-55, 2016. DOI: http://doi.org/10.1016/j.conbuildmat.2016.01.037. DOI: https://doi.org/10.1016/j.conbuildmat.2016.01.037

SILVA, R. A.; NEVES, R.; DE BRITO, J.; DHIR, R. K. Carbonation behavior of recycled aggregate concrete. Cement and Concrete Composites, Amsterdam, v. 62, p. 22-32, 2015. DOI: http://doi.org/10.1016/j.cemconcomp.2015.04.017. DOI: https://doi.org/10.1016/j.cemconcomp.2015.04.017

TALUKDAR, S.; BANTHIA, N. Carbonation in concrete infrastructure in the context of global climate change: Development of a service lifespan model. Construction and Building Materials, Guildford, v. 40, p. 775-782, 2013. DOI: http://doi.org/10.1016/j.conbuildmat.2012.11.026. DOI: https://doi.org/10.1016/j.conbuildmat.2012.11.026

YU, B.; LIU, J.; CHEN, Z. Probabilistic evaluation method for corrosion risk of steel reinforcement based on concrete resistivity. Construction and Building Materials, Guildford, v. 138, n. 1, p. 101-113, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.01.100. DOI: https://doi.org/10.1016/j.conbuildmat.2017.01.100

YU, J.; WU, H. L.; MISHRA, D. K.; LI, G. Compressive strength and environmental impact of sustainable blended cement with high-dosage Limestone and Calcined Clay (LC2). Journal of Cleaner Production, Amsterdam, v. 278, 2021. DOI: https://doi.org/10.1016/j.jclepro.2020.123616. DOI: https://doi.org/10.1016/j.jclepro.2020.123616

ZARIBAF, B. H.; UZAL, B.; KURTIS, K. Compatibility of superplasticizers with limestone-metakaolin blended cementitious system. In: SCRIVENER, K.; FAVIER, A. (ed.). Calcined Clays for Sustainable Concrete. Berlim: Springer, 2015. p 427-434. (RILEM Bookseries 10). DOI: http://dx.doi.org/10.1007/978-94-017-9939-3_53. DOI: https://doi.org/10.1007/978-94-017-9939-3_53

ZHANG, D.; JAWORSKA, B.; ZHU, B.; DAHLQUIST, K.; LI, V. C. Engineered Cementitious Composites (ECC) with limestone calcined clay cement (LC3). Cement and Concrete Composites, Amsterdam, v. 114, p. 1-28, 2020. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103766. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103766

Downloads

Publicado

2022-12-27

Como Citar

Balestra, C. E. T., Savaris, G., Nakano, A. Y., & Schneider, R. (2022). Carbonatação de concretos contendo cimento LC³ com diferentes materiais suplementares. Semina: Ciências Exatas E Tecnológicas, 43(2), 161–170. https://doi.org/10.5433/1679-0375.2022v43n2p161

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

Loading...