Cracks Detection in Concrete Surfaces using Machine Learning

Cracks Detection in Concrete Surfaces using Machine Learning

Authors

DOI:

https://doi.org/10.5433/1679-0375.2025.v46.51427

Keywords:

infrastructure maintenance, computer vision, texture descriptors, automated monitoring

Abstract

In this study, Machine Learning techniques were used to detect cracks in concrete surfaces. Texture descriptors were extracted from a set of images of cracked and non-cracked concrete surfaces using Gray Level Co-occurrence Matrix (GLCM). Texture descriptors features were used to train four machine learning models: Logistic Regression, Artificial Neural Networks, Random Forest, and eXtreme Gradient Boosting (XGBoost). k-fold cross validation was used to evaluate the performance of the models as well as metrics such as accuracy, sensitivity, precision, F1-score - the harmonic mean between precision and sensitivity - and the Area Under the ROC Curve (AUC). The results indicate satisfactory performance of all models, with emphasis on the XGBoost model, which achieved 99.65% accuracy and 99.70% sensitivity.

Downloads

Author Biographies

Antonio Mendes Magalhães Júnior, Universidade Federal de Lavras

PhD student in statistics at UFLA.

Ícaro Viterbre Debique Sousa, Universidade Federal de Lavras

PhD student in statistics at UFLA.

Heron Viterbre Debique Sousa, Universidade Federal de Minas Gerais

PhD student in Metallurgical Engineering at PPGEM - UFMG, Belo Horizonte, Minas Gerais, Brazil

Thelma Sáfadi, Universidade Federal de Lavras

Prof. Dr., Department of Statistics, UFLA, Lavras, Minas Gerais, Brazil.

Paulo Henrique Sales Guimarães, Universidade Federal de Lavras

Prof. Dr., Department of Statistics, UFLA, Lavras, Minas Gerais, Brazil

References

Arivabene, A. C. (2015). Patologias em estruturas de concreto armado: Estudo de caso. Revista Especialize On-line IPOG, 1(10), 1-22.

Associação Brasileira de Normas Técnicas. (2010). NBR 9575: Impermeabilização - Seleção e projeto. ABNT.

Associação Brasileira de Normas Técnicas. (2014). NBR 6118: Projeto de estruturas de concreto - Procedimento. ABNT.

Chen, K., Yadav, A., Khan, A., Meng, Y., & Zhu, K. (2019). Improved crack detection and recognition based on convolutional neural network. Modelling and Simulation in Engineering, 2019 1–8. https://doi.org/10.1155/2019/8796743

Diniz, J. de C. N., Paiva, A. C., Braz, Geraldo, Jr., Almeida, J. D. S., Silva, A. C., Cunha, A. M. T. S., & Cunha, S. C. A. P. S. (2023). A method for detecting pathologies in concrete structures using deep neural networks. Applied Sciences, 13(9), 5763. https://doi.org/10.3390/app13095763

Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on systems, man, and cybernetics, (6), 610-621. 10.1109/TSMC.1973.4309314

Kim, J. J., Kim, A.-R., & Lee, S.-W. (2020). Artificial neural network-based automated crack detection and analysis for the inspection of concrete structures. Applied Sciences, 10(22), 8105. https://doi.org/10.3390/app10228105

Mansour, I. R., & Thomson, R. M. (2023). Haralick texture feature analysis for characterization of specific energy and absorbed dose distributions across cellular to patient length scales. Physics in Medicine & Biology, 68(9),1-12. https://doi.org/10.1088/1361-6560/acc7f1

Nascimento, E. R. dos S., & Fontes, M. D. S. (2021). Patologias das estruturas de concreto armado. Revista FATEC de Tecnologia e Ciências, 6(1), 1-28. https://revista.fatecba.edu.br/index.php/rftc/issue/view/rftcv6n12021

Özgenel, Ç. F. (2019). Concrete crack images for classification. Mendeley Data, 2. https://doi.org/10.17632/5y9wdsg2zt.2

Pacifici, F., Chini, M., & Emery, W. J. (2009). A neural network approach using multiscale textural metrics from very high-resolution panchromatic imagery for urban land use classification. Remote Sensing of Environment, 113(6), 1276–1292. https://doi.org/10.1016/j.rse.2009.02.014

R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Tou, J., Tou, P., Lau, P. Y., & Tay, Y. H. (2007). Computer vision-based wood recognition system. In Thai Embedded Systems Association, Proceedings of the International Workshop on Advanced Image Technology [Proceedings]. International Workshop on Advance Image Technology, Bangkok, Thailand.

Vrbik, I., Van Nest, S. J., Meksiarun, P., Loeppky, J., Brolo, A., Lum, J. J., & Jirasek, A. (2019). Haralick texture feature analysis for quantifying radiation response heterogeneity in murine models observed using Raman spectroscopic mapping. PLoS One, 14(2), e0212225. 10.1371/journal.pone.0212225

Downloads

Published

2025-04-08

How to Cite

Magalhães Júnior, A. M., Sousa, Ícaro V. D., Sousa, H. V. D., Sáfadi, T., & Guimarães, P. H. S. (2025). Cracks Detection in Concrete Surfaces using Machine Learning. Semina: Ciências Exatas E Tecnológicas, 46, e51427. https://doi.org/10.5433/1679-0375.2025.v46.51427

Issue

Section

Statistic

Similar Articles

You may also start an advanced similarity search for this article.

Loading...