Time-Varying Zero-Adjusted Poisson Distribution for Modeling Count Time Series
DOI:
https://doi.org/10.5433/1679-0375.2024.v45.49943Keywords:
bayesian inference, count data, excess zeros, garma(p, q), influenzaAbstract
Many studies have used extensions of ARMA models for the analysis of non-Gaussian time series. One of them is the Generalized Autoregressive Moving Average, GARMA, enabling the modeling of count time series with distributions such as Poisson. The GARMA class is being expanded to accommodate other distributions, aiming to capture the typical characteristics of count data, including under or overdispersion and excess zeros. This study aims to propose an approach based on the GARMA class in order to analyze count time series with excess zeros, assuming a time-varying zero-adjusted Poisson distribution. This approach allows for capturing serial correlation, forecasting the future values, and estimating the future probability of zeros. For inference, a Bayesian analysis was adopted using the Hamiltonian Monte Carlo (HMC) algorithm for sampling from the joint posterior distribution. We conducted a simulation study and presented an application to influenza mortality reported in Brazil. Our findings demonstrated the usefulness of the model in estimating the probability of non-occurrence and the number of counts in future periods.
Downloads
References
Alqawba, M., Diawara, N., & Chaganty, N. (2019). Zero-inflated count time series models using Gaussian copula. Sequential analysis, 38(3), 342–357. DOI: https://doi.org/10.1080/07474946.2019.1648922
Andrade, B., Andrade, M., & Ehlers, R. (2015). Bayesian GARMA models for count data. Communications in statistics: case studies, data analysis and applications, 1(4), 192–205. DOI: https://doi.org/10.1080/23737484.2016.1190307
Aragaw, A., Azene, A., & Workie, M. (2022). Poisson logit hurdle model with associated factors of perinatal mortality in Ethiopia. Journal of big data, 9(16), 1–11. DOI: https://doi.org/10.1186/s40537-022-00567-6
Barreto-Souza, W. (2017). Mixed Poisson INAR(1) processes. Statistical papers, 60, 2119–2139. DOI: https://doi.org/10.1007/s00362-017-0912-x
Benjamin, M., Rigby, R., & Stasinopoulos, M. (2003). Generalized Autoregressive Moving Average Models. Journal of the American statistical association, 98(461), 214–223. DOI: https://doi.org/10.1198/016214503388619238
Bertoli, W., Conceição, K. S., Andrade, M. G., & Louzada, F. (2021). A New Regression Model for the Analysis of Overdispersed and Zero-Modified Count Data. Entropy, 23(646), 1–25. DOI: https://doi.org/10.3390/e23060646
Box, G., & Jenkins, G. (1976). Time series analysis, forecasting and control. Holden-Day.
Box, G., & Pierce, D. (1970). Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. Journal of the American statistical association, 65(332), 1509–1526. DOI: https://doi.org/10.1080/01621459.1970.10481180
Briet, O., Amerasinghe, P., & Vounatsou, P. (2013). Generalized Seasonal Autoregressive Integrated Moving Average Models for Count Data with Application to Malaria Time Series with Low Case Numbers. Plos one, 8(6), 1–9. DOI: https://doi.org/10.1371/journal.pone.0065761
Broemeling, L. (2019). Bayesian analysis of time series. CRC Press. DOI: https://doi.org/10.1201/9780429488443
Burda, M., & Maheu, J. (2013). Bayesian adaptive Hamiltonian Monte Carlo with an application to highdimensional BEKK GARCH models. Studies in nonlinear dynamics and econometrics, 17, 345–372. DOI: https://doi.org/10.1515/snde-2013-0020
Canova, F., & Hansen, B. (1995). Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability. Journal of business & economic statistics, 13(3), 237–252. DOI: https://doi.org/10.1080/07350015.1995.10524598
Conceição, K., Suzuki, A., & Andrade, M. (2021). A Bayesian approach for zero-modified Skellam model with Hamiltonian MCMC. Statistical methods & applications, 30(2), 747–765. DOI: https://doi.org/10.1007/s10260-020-00541-7
Cox, D., & Stuart, A. (1955). Some Quick Sign Tests for Trend in Location and Dispersion. Biometrika, 42(1), 80–95. DOI: https://doi.org/10.1093/biomet/42.1-2.80
Davis, R., Fokianos, K., Holan, S., Joe, H., Livsey, J., Lund, R., Pipiras, V., & Ravishanker, N. (2021). Count time series: A methodological review. Journal of the American statistical association, 116(55), 1533–1547. DOI: https://doi.org/10.1080/01621459.2021.1904957
Duane, S., Kennedy, A., Pendleton, B., & Roweth, D. (1987). Hybrid Monte Carlo. Physics letters B, 195(2), 216–222. DOI: https://doi.org/10.1016/0370-2693(87)91197-X
Dunn, P., & Smyth, G. (1996). Randomized Quantile Residuals. Journal of computational and graphical statistics, 5(3), 236–244. DOI: https://doi.org/10.1080/10618600.1996.10474708
Ehlers, R. (2019). A Conway-Maxwell-Poisson GARMA Model for Count Data. Arxiv, 1–11.
Feng, C. (2021). A comparison of zero-inflated and hurdle models for modeling zero-inflated count data. Journal of statistical distributions and applications, 8(1), 1–19. DOI: https://doi.org/10.1186/s40488-021-00121-4
Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2014). Bayesian data analysis. DOI: https://doi.org/10.1201/b16018
Ghahramani, M., & White, S. (2020). Time Series Regression for Zero-Inflated and Overdispersed Count Data: A Functional Response Model Approach. Journal of statistical theory and practice, 14(2), 1–18. DOI: https://doi.org/10.1007/s42519-020-00094-8
Hashim, L., Hashim, K., & Shiker, M. (2021). An Application Comparison of Two Poisson Models on Zero Count Data. Journal of physics, 1818. DOI: https://doi.org/10.1088/1742-6596/1818/1/012165
Hoffman, M., & Gelman, A. (2014). The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. Journal of machine learning research, 15(1), 1593–1623.
Khandelwal, I., Adhikari, R., & Verma, G. (2015). Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition. Procedia computer science, 48, 173–179. DOI: https://doi.org/10.1016/j.procs.2015.04.167
Maiti, R., Biswas, A., & Chakraborty, B. (2018). Modelling of low count heavy tailed time series data consisting large number of zeros and ones. Statistical Methods & Applications, 27(3), 407–435. DOI: https://doi.org/10.1007/s10260-017-0413-z
McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Chapman & Hall. DOI: https://doi.org/10.1201/9780429029608
Melo, M., & Alencar, A. (2020). Conway–Maxwell–Poisson Autoregressive Moving Average Model for Equidispersed, Underdispersed, and Overdispersed Count Data. Journal of time series analysis, 41(6), 830–857. DOI: https://doi.org/10.1111/jtsa.12550
Mikis Stasinopoulos and Bob Rigby and Paul Eilers. (2016). Gamlss.util: Gamlss utilities [R package version 4.3-4].
Ministério da Saúde. (2022). Morbidade hospitalar do Sistema Único de Saúde.
Neal, R. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. Jones, & X. Meng (Eds.), Handbook of markov chain monte carlo (pp. 1–51). Chapman & Hall. DOI: https://doi.org/10.1201/b10905-6
Payne, E., Hardin, J., Egede, L., Ramakrishnan, V., Selassie, A., & Gebregziabher, M. (2017). Approaches for dealing with various sources of overdispersion in modeling count data: Scale adjustment versus modeling. Statistical methods in medical research, 26(4), 1802–1823. DOI: https://doi.org/10.1177/0962280215588569
R Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria.
Rigby, R., Stasinopoulos, M., Heller, G., & Bastiani, F. (2019). Distributions for modeling location, scale, and shape: using GAMLSS in R. Chapman & Hall. DOI: https://doi.org/10.1201/9780429298547
Sáfadi, T., & Morettin, P. (2003). A Bayesian analysis of autoregressive models with random normal coefficients. Journal of statistical computation and simulation, 73(8), 563–573. DOI: https://doi.org/10.1080/0094965031000136003
Sales, L., Alencar, A., & Ho, L. (2022). The BerG generalized autoregressive moving average model for count time series. Computers & industrial engineering, 168, 1–13. DOI: https://doi.org/10.1016/j.cie.2022.108104
Sathish, V., Mukhopadhyay, S., & Tiwari, R. (2021). Autoregressive and moving average models for zero-inflated count time series. Statistica Neerlandica, 76(2), 1–23. DOI: https://doi.org/10.1111/stan.12255
Silva, R. (2020). Generalized Autoregressive Neural Network Models. ArXiv, 1, -11.
Stan Development Team. (2022). RStan: the R interface to Stan [R package version 2.26.13].
Stasinopoulos, M., & Rigby, R. (2020). Distributions for Generalized Additive Models for Location Scale and Shape [R package version 5.1-6].
Tawiah, K., Iddrisu, W., & Asosega, K. (2021). Zero-Inflated Time Series Modelling of COVID-19 Deaths in Ghana. Journal of environmental and public health, 1–9. DOI: https://doi.org/10.1155/2021/5543977
Tian, G., Liu, Y., Tang, M., & Jiang, X. (2018). Type I multivariate zero-truncated/adjusted Poisson distributions with applications. Journal of computational and applied mathematics, 344, 132–153. DOI: https://doi.org/10.1016/j.cam.2018.05.014
Zuur, A., Ieno, E., Walker, N., Saveliev, A., & Smith, G. (2009). Mixed effects models and extensions in ecology with R. Springer. DOI: https://doi.org/10.1007/978-0-387-87458-6
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Luiz Otávio de Oliveira Pala, Thelma Sáfadi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Copyright Declaration for articles published in this journal is the author’s right. Since manuscripts are published in an open access Journal, they are free to use, with their own attributions, in educational and non-commercial applications. The Journal has the right to make, in the original document, changes regarding linguistic norms, orthography, and grammar, with the purpose of ensuring the standard norms of the language and the credibility of the Journal. It will, however, respect the writing style of the authors. When necessary, conceptual changes, corrections, or suggestions will be forwarded to the authors. In such cases, the manuscript shall be subjected to a new evaluation after revision. Responsibility for the opinions expressed in the manuscripts lies entirely with the authors.
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.